Spaces:
Running
Running
from fastapi import FastAPI, Response | |
from pydantic_settings import BaseSettings, SettingsConfigDict | |
import pandas as pd | |
from yt_api import get_comments | |
from models import init_emotions_model | |
class Settings(BaseSettings): | |
YT_API_KEY: str | |
PRED_BATCH_SIZE: int = 512 | |
MAX_COMMENT_SIZE: int = 300 | |
model_config = SettingsConfigDict(env_file='.env') | |
settings = Settings() | |
app = FastAPI(title='social-stat') | |
emotions_clf = init_emotions_model() | |
def home(): | |
return 'social-stat' | |
def predict(video_id): | |
# Get comments | |
comments = get_comments( | |
video_id, | |
settings.MAX_COMMENT_SIZE, | |
settings.YT_API_KEY | |
) | |
comments_df = pd.DataFrame(comments) | |
# Predict emotions in batches | |
text_list = comments_df['text_display'].to_list() | |
batch_size = settings.PRED_BATCH_SIZE | |
text_batches = [text_list[i:i + batch_size] | |
for i in range(0, len(text_list), batch_size)] | |
preds = [] | |
for batch in text_batches: | |
preds.extend(emotions_clf(batch)) | |
# Add predictions to DataFrame | |
preds_df = [] | |
for pred in preds: | |
pred_dict = {} | |
for emotion in pred: | |
pred_dict[emotion['label']] = emotion['score'] | |
preds_df.append(pred_dict) | |
preds_df = pd.DataFrame(preds_df) | |
comments_df = pd.concat([comments_df, preds_df], axis=1) | |
# Return DataFrame as a JSON file | |
return Response( | |
content=comments_df.to_json(orient='records'), | |
media_type='application/json') | |