from fastapi import FastAPI, Response from pydantic_settings import BaseSettings, SettingsConfigDict import pandas as pd from yt_api import get_comments from models import init_emotions_model class Settings(BaseSettings): YT_API_KEY: str PRED_BATCH_SIZE: int = 512 MAX_COMMENT_SIZE: int = 300 model_config = SettingsConfigDict(env_file='.env') settings = Settings() app = FastAPI(title='social-stat') emotions_clf = init_emotions_model() @app.get('/') def home(): return 'social-stat' @app.get('/predict') def predict(video_id): # Get comments comments = get_comments( video_id, settings.MAX_COMMENT_SIZE, settings.YT_API_KEY ) comments_df = pd.DataFrame(comments) # Predict emotions in batches text_list = comments_df['text_display'].to_list() batch_size = settings.PRED_BATCH_SIZE text_batches = [text_list[i:i + batch_size] for i in range(0, len(text_list), batch_size)] preds = [] for batch in text_batches: preds.extend(emotions_clf(batch)) # Add predictions to DataFrame preds_df = [] for pred in preds: pred_dict = {} for emotion in pred: pred_dict[emotion['label']] = emotion['score'] preds_df.append(pred_dict) preds_df = pd.DataFrame(preds_df) comments_df = pd.concat([comments_df, preds_df], axis=1) # Return DataFrame as a JSON file return Response( content=comments_df.to_json(orient='records'), media_type='application/json')