Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
from modules_forge.shared import add_supported_preprocessor, preprocessor_dir | |
from backend import memory_management | |
from backend.patcher.base import ModelPatcher | |
from backend.patcher import clipvision | |
from modules_forge.utils import resize_image_with_pad | |
from modules.modelloader import load_file_from_url | |
from modules_forge.utils import numpy_to_pytorch | |
class PreprocessorParameter: | |
def __init__(self, minimum=0.0, maximum=1.0, step=0.01, label='Parameter 1', value=0.5, visible=False, **kwargs): | |
self.gradio_update_kwargs = dict( | |
minimum=minimum, maximum=maximum, step=step, label=label, value=value, visible=visible, **kwargs | |
) | |
class Preprocessor: | |
def __init__(self): | |
self.name = 'PreprocessorBase' | |
self.tags = [] | |
self.model_filename_filters = [] | |
self.slider_resolution = PreprocessorParameter(label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True) | |
self.slider_1 = PreprocessorParameter() | |
self.slider_2 = PreprocessorParameter() | |
self.slider_3 = PreprocessorParameter() | |
self.model_patcher: ModelPatcher = None | |
self.show_control_mode = True | |
self.do_not_need_model = False | |
self.sorting_priority = 0 # higher goes to top in the list | |
self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = True | |
self.fill_mask_with_one_when_resize_and_fill = False | |
self.use_soft_projection_in_hr_fix = False | |
self.expand_mask_when_resize_and_fill = False | |
def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs): | |
if load_device is None: | |
load_device = memory_management.get_torch_device() | |
if offload_device is None: | |
offload_device = torch.device('cpu') | |
if not memory_management.should_use_fp16(load_device): | |
dtype = torch.float32 | |
model.eval() | |
model = model.to(device=offload_device, dtype=dtype) | |
self.model_patcher = ModelPatcher(model=model, load_device=load_device, offload_device=offload_device, **kwargs) | |
self.model_patcher.dtype = dtype | |
return self.model_patcher | |
def move_all_model_patchers_to_gpu(self): | |
memory_management.load_models_gpu([self.model_patcher]) | |
return | |
def send_tensor_to_model_device(self, x): | |
return x.to(device=self.model_patcher.current_device, dtype=self.model_patcher.dtype) | |
def process_after_running_preprocessors(self, process, params, *args, **kwargs): | |
return | |
def process_before_every_sampling(self, process, cond, mask, *args, **kwargs): | |
return cond, mask | |
def process_after_every_sampling(self, process, params, *args, **kwargs): | |
return | |
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs): | |
return input_image | |
class PreprocessorNone(Preprocessor): | |
def __init__(self): | |
super().__init__() | |
self.name = 'None' | |
self.sorting_priority = 10 | |
class PreprocessorCanny(Preprocessor): | |
def __init__(self): | |
super().__init__() | |
self.name = 'canny' | |
self.tags = ['Canny'] | |
self.model_filename_filters = ['canny'] | |
self.slider_1 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=100, label='Low Threshold', visible=True) | |
self.slider_2 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=200, label='High Threshold', visible=True) | |
self.sorting_priority = 100 | |
self.use_soft_projection_in_hr_fix = True | |
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs): | |
input_image, remove_pad = resize_image_with_pad(input_image, resolution) | |
canny_image = cv2.cvtColor(cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB) | |
return remove_pad(canny_image) | |
add_supported_preprocessor(PreprocessorNone()) | |
add_supported_preprocessor(PreprocessorCanny()) | |
class PreprocessorClipVision(Preprocessor): | |
global_cache = {} | |
def __init__(self, name, url, filename): | |
super().__init__() | |
self.name = name | |
self.url = url | |
self.filename = filename | |
self.slider_resolution = PreprocessorParameter(visible=False) | |
self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False | |
self.show_control_mode = False | |
self.sorting_priority = 1 | |
self.clipvision = None | |
def load_clipvision(self): | |
if self.clipvision is not None: | |
return self.clipvision | |
ckpt_path = load_file_from_url( | |
url=self.url, | |
model_dir=preprocessor_dir, | |
file_name=self.filename | |
) | |
if ckpt_path in PreprocessorClipVision.global_cache: | |
self.clipvision = PreprocessorClipVision.global_cache[ckpt_path] | |
else: | |
self.clipvision = clipvision.load(ckpt_path) | |
PreprocessorClipVision.global_cache[ckpt_path] = self.clipvision | |
return self.clipvision | |
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs): | |
clipvision = self.load_clipvision() | |
return clipvision.encode_image(numpy_to_pytorch(input_image)) | |