import cv2 import torch from modules_forge.shared import add_supported_preprocessor, preprocessor_dir from backend import memory_management from backend.patcher.base import ModelPatcher from backend.patcher import clipvision from modules_forge.utils import resize_image_with_pad from modules.modelloader import load_file_from_url from modules_forge.utils import numpy_to_pytorch class PreprocessorParameter: def __init__(self, minimum=0.0, maximum=1.0, step=0.01, label='Parameter 1', value=0.5, visible=False, **kwargs): self.gradio_update_kwargs = dict( minimum=minimum, maximum=maximum, step=step, label=label, value=value, visible=visible, **kwargs ) class Preprocessor: def __init__(self): self.name = 'PreprocessorBase' self.tags = [] self.model_filename_filters = [] self.slider_resolution = PreprocessorParameter(label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True) self.slider_1 = PreprocessorParameter() self.slider_2 = PreprocessorParameter() self.slider_3 = PreprocessorParameter() self.model_patcher: ModelPatcher = None self.show_control_mode = True self.do_not_need_model = False self.sorting_priority = 0 # higher goes to top in the list self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = True self.fill_mask_with_one_when_resize_and_fill = False self.use_soft_projection_in_hr_fix = False self.expand_mask_when_resize_and_fill = False def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float32, **kwargs): if load_device is None: load_device = memory_management.get_torch_device() if offload_device is None: offload_device = torch.device('cpu') if not memory_management.should_use_fp16(load_device): dtype = torch.float32 model.eval() model = model.to(device=offload_device, dtype=dtype) self.model_patcher = ModelPatcher(model=model, load_device=load_device, offload_device=offload_device, **kwargs) self.model_patcher.dtype = dtype return self.model_patcher def move_all_model_patchers_to_gpu(self): memory_management.load_models_gpu([self.model_patcher]) return def send_tensor_to_model_device(self, x): return x.to(device=self.model_patcher.current_device, dtype=self.model_patcher.dtype) def process_after_running_preprocessors(self, process, params, *args, **kwargs): return def process_before_every_sampling(self, process, cond, mask, *args, **kwargs): return cond, mask def process_after_every_sampling(self, process, params, *args, **kwargs): return def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs): return input_image class PreprocessorNone(Preprocessor): def __init__(self): super().__init__() self.name = 'None' self.sorting_priority = 10 class PreprocessorCanny(Preprocessor): def __init__(self): super().__init__() self.name = 'canny' self.tags = ['Canny'] self.model_filename_filters = ['canny'] self.slider_1 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=100, label='Low Threshold', visible=True) self.slider_2 = PreprocessorParameter(minimum=0, maximum=256, step=1, value=200, label='High Threshold', visible=True) self.sorting_priority = 100 self.use_soft_projection_in_hr_fix = True def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs): input_image, remove_pad = resize_image_with_pad(input_image, resolution) canny_image = cv2.cvtColor(cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB) return remove_pad(canny_image) add_supported_preprocessor(PreprocessorNone()) add_supported_preprocessor(PreprocessorCanny()) class PreprocessorClipVision(Preprocessor): global_cache = {} def __init__(self, name, url, filename): super().__init__() self.name = name self.url = url self.filename = filename self.slider_resolution = PreprocessorParameter(visible=False) self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False self.show_control_mode = False self.sorting_priority = 1 self.clipvision = None def load_clipvision(self): if self.clipvision is not None: return self.clipvision ckpt_path = load_file_from_url( url=self.url, model_dir=preprocessor_dir, file_name=self.filename ) if ckpt_path in PreprocessorClipVision.global_cache: self.clipvision = PreprocessorClipVision.global_cache[ckpt_path] else: self.clipvision = clipvision.load(ckpt_path) PreprocessorClipVision.global_cache[ckpt_path] = self.clipvision return self.clipvision @torch.no_grad() def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs): clipvision = self.load_clipvision() return clipvision.encode_image(numpy_to_pytorch(input_image))