Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
import os | |
from functools import cached_property | |
from typing import TYPE_CHECKING, Callable | |
import cv2 | |
import numpy as np | |
import torch | |
from modules import devices, errors, face_restoration, shared | |
from modules_forge.utils import prepare_free_memory | |
if TYPE_CHECKING: | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
logger = logging.getLogger(__name__) | |
def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor: | |
"""Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor.""" | |
assert img.shape[2] == 3, "image must be RGB" | |
if img.dtype == "float64": | |
img = img.astype("float32") | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return torch.from_numpy(img.transpose(2, 0, 1)).float() | |
def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray: | |
""" | |
Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range. | |
""" | |
tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
assert tensor.dim() == 3, "tensor must be RGB" | |
img_np = tensor.numpy().transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image, no RGB/BGR required | |
return np.squeeze(img_np, axis=2) | |
return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB) | |
def create_face_helper(device) -> FaceRestoreHelper: | |
from facexlib.detection import retinaface | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
if hasattr(retinaface, 'device'): | |
retinaface.device = device | |
return FaceRestoreHelper( | |
upscale_factor=1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
) | |
def restore_with_face_helper( | |
np_image: np.ndarray, | |
face_helper: FaceRestoreHelper, | |
restore_face: Callable[[torch.Tensor], torch.Tensor], | |
) -> np.ndarray: | |
""" | |
Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image. | |
`restore_face` should take a cropped face image and return a restored face image. | |
""" | |
from torchvision.transforms.functional import normalize | |
np_image = np_image[:, :, ::-1] | |
original_resolution = np_image.shape[0:2] | |
try: | |
logger.debug("Detecting faces...") | |
face_helper.clean_all() | |
face_helper.read_image(np_image) | |
face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) | |
face_helper.align_warp_face() | |
logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces)) | |
for cropped_face in face_helper.cropped_faces: | |
cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) | |
try: | |
with torch.no_grad(): | |
cropped_face_t = restore_face(cropped_face_t) | |
devices.torch_gc() | |
except Exception: | |
errors.report('Failed face-restoration inference', exc_info=True) | |
restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1)) | |
restored_face = (restored_face * 255.0).astype('uint8') | |
face_helper.add_restored_face(restored_face) | |
logger.debug("Merging restored faces into image") | |
face_helper.get_inverse_affine(None) | |
img = face_helper.paste_faces_to_input_image() | |
img = img[:, :, ::-1] | |
if original_resolution != img.shape[0:2]: | |
img = cv2.resize( | |
img, | |
(0, 0), | |
fx=original_resolution[1] / img.shape[1], | |
fy=original_resolution[0] / img.shape[0], | |
interpolation=cv2.INTER_LINEAR, | |
) | |
logger.debug("Face restoration complete") | |
finally: | |
face_helper.clean_all() | |
return img | |
class CommonFaceRestoration(face_restoration.FaceRestoration): | |
net: torch.Module | None | |
model_url: str | |
model_download_name: str | |
def __init__(self, model_path: str): | |
super().__init__() | |
self.net = None | |
self.model_path = model_path | |
os.makedirs(model_path, exist_ok=True) | |
def face_helper(self) -> FaceRestoreHelper: | |
return create_face_helper(self.get_device()) | |
def send_model_to(self, device): | |
if self.net: | |
logger.debug("Sending %s to %s", self.net, device) | |
self.net.to(device) | |
if self.face_helper: | |
logger.debug("Sending face helper to %s", device) | |
self.face_helper.face_det.to(device) | |
self.face_helper.face_parse.to(device) | |
def get_device(self): | |
raise NotImplementedError("get_device must be implemented by subclasses") | |
def load_net(self) -> torch.Module: | |
raise NotImplementedError("load_net must be implemented by subclasses") | |
def restore_with_helper( | |
self, | |
np_image: np.ndarray, | |
restore_face: Callable[[torch.Tensor], torch.Tensor], | |
) -> np.ndarray: | |
try: | |
if self.net is None: | |
self.net = self.load_net() | |
except Exception: | |
logger.warning("Unable to load face-restoration model", exc_info=True) | |
return np_image | |
try: | |
prepare_free_memory() | |
self.send_model_to(self.get_device()) | |
return restore_with_face_helper(np_image, self.face_helper, restore_face) | |
finally: | |
if shared.opts.face_restoration_unload: | |
self.send_model_to(devices.cpu) | |
def patch_facexlib(dirname: str) -> None: | |
import facexlib.detection | |
import facexlib.parsing | |
det_facex_load_file_from_url = facexlib.detection.load_file_from_url | |
par_facex_load_file_from_url = facexlib.parsing.load_file_from_url | |
def update_kwargs(kwargs): | |
return dict(kwargs, save_dir=dirname, model_dir=None) | |
def facex_load_file_from_url(**kwargs): | |
return det_facex_load_file_from_url(**update_kwargs(kwargs)) | |
def facex_load_file_from_url2(**kwargs): | |
return par_facex_load_file_from_url(**update_kwargs(kwargs)) | |
facexlib.detection.load_file_from_url = facex_load_file_from_url | |
facexlib.parsing.load_file_from_url = facex_load_file_from_url2 | |