File size: 6,529 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from __future__ import annotations

import logging
import os
from functools import cached_property
from typing import TYPE_CHECKING, Callable

import cv2
import numpy as np
import torch

from modules import devices, errors, face_restoration, shared
from modules_forge.utils import prepare_free_memory

if TYPE_CHECKING:
    from facexlib.utils.face_restoration_helper import FaceRestoreHelper

logger = logging.getLogger(__name__)


def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor:
    """Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor."""
    assert img.shape[2] == 3, "image must be RGB"
    if img.dtype == "float64":
        img = img.astype("float32")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return torch.from_numpy(img.transpose(2, 0, 1)).float()


def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray:
    """
    Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range.
    """
    tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])
    assert tensor.dim() == 3, "tensor must be RGB"
    img_np = tensor.numpy().transpose(1, 2, 0)
    if img_np.shape[2] == 1:  # gray image, no RGB/BGR required
        return np.squeeze(img_np, axis=2)
    return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB)


def create_face_helper(device) -> FaceRestoreHelper:
    from facexlib.detection import retinaface
    from facexlib.utils.face_restoration_helper import FaceRestoreHelper
    if hasattr(retinaface, 'device'):
        retinaface.device = device
    return FaceRestoreHelper(
        upscale_factor=1,
        face_size=512,
        crop_ratio=(1, 1),
        det_model='retinaface_resnet50',
        save_ext='png',
        use_parse=True,
        device=device,
    )


def restore_with_face_helper(
    np_image: np.ndarray,
    face_helper: FaceRestoreHelper,
    restore_face: Callable[[torch.Tensor], torch.Tensor],
) -> np.ndarray:
    """
    Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image.

    `restore_face` should take a cropped face image and return a restored face image.
    """
    from torchvision.transforms.functional import normalize
    np_image = np_image[:, :, ::-1]
    original_resolution = np_image.shape[0:2]

    try:
        logger.debug("Detecting faces...")
        face_helper.clean_all()
        face_helper.read_image(np_image)
        face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
        face_helper.align_warp_face()
        logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces))
        for cropped_face in face_helper.cropped_faces:
            cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0)
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)

            try:
                with torch.no_grad():
                    cropped_face_t = restore_face(cropped_face_t)
                devices.torch_gc()
            except Exception:
                errors.report('Failed face-restoration inference', exc_info=True)

            restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1))
            restored_face = (restored_face * 255.0).astype('uint8')
            face_helper.add_restored_face(restored_face)

        logger.debug("Merging restored faces into image")
        face_helper.get_inverse_affine(None)
        img = face_helper.paste_faces_to_input_image()
        img = img[:, :, ::-1]
        if original_resolution != img.shape[0:2]:
            img = cv2.resize(
                img,
                (0, 0),
                fx=original_resolution[1] / img.shape[1],
                fy=original_resolution[0] / img.shape[0],
                interpolation=cv2.INTER_LINEAR,
            )
        logger.debug("Face restoration complete")
    finally:
        face_helper.clean_all()
    return img


class CommonFaceRestoration(face_restoration.FaceRestoration):
    net: torch.Module | None
    model_url: str
    model_download_name: str

    def __init__(self, model_path: str):
        super().__init__()
        self.net = None
        self.model_path = model_path
        os.makedirs(model_path, exist_ok=True)

    @cached_property
    def face_helper(self) -> FaceRestoreHelper:
        return create_face_helper(self.get_device())

    def send_model_to(self, device):
        if self.net:
            logger.debug("Sending %s to %s", self.net, device)
            self.net.to(device)
        if self.face_helper:
            logger.debug("Sending face helper to %s", device)
            self.face_helper.face_det.to(device)
            self.face_helper.face_parse.to(device)

    def get_device(self):
        raise NotImplementedError("get_device must be implemented by subclasses")

    def load_net(self) -> torch.Module:
        raise NotImplementedError("load_net must be implemented by subclasses")

    def restore_with_helper(
        self,
        np_image: np.ndarray,
        restore_face: Callable[[torch.Tensor], torch.Tensor],
    ) -> np.ndarray:
        try:
            if self.net is None:
                self.net = self.load_net()
        except Exception:
            logger.warning("Unable to load face-restoration model", exc_info=True)
            return np_image

        try:
            prepare_free_memory()
            self.send_model_to(self.get_device())
            return restore_with_face_helper(np_image, self.face_helper, restore_face)
        finally:
            if shared.opts.face_restoration_unload:
                self.send_model_to(devices.cpu)


def patch_facexlib(dirname: str) -> None:
    import facexlib.detection
    import facexlib.parsing

    det_facex_load_file_from_url = facexlib.detection.load_file_from_url
    par_facex_load_file_from_url = facexlib.parsing.load_file_from_url

    def update_kwargs(kwargs):
        return dict(kwargs, save_dir=dirname, model_dir=None)

    def facex_load_file_from_url(**kwargs):
        return det_facex_load_file_from_url(**update_kwargs(kwargs))

    def facex_load_file_from_url2(**kwargs):
        return par_facex_load_file_from_url(**update_kwargs(kwargs))

    facexlib.detection.load_file_from_url = facex_load_file_from_url
    facexlib.parsing.load_file_from_url = facex_load_file_from_url2