File size: 4,937 Bytes
08e5ef1
7edda8b
2bede7c
4c4c78d
5fd1a0a
7edda8b
 
2bede7c
 
75b770e
08e5ef1
aa85862
 
ac97e5b
08e5ef1
1fba392
 
925d15e
 
08e5ef1
2bede7c
859a065
 
ac97e5b
 
eefa44d
925d15e
7686e09
aa85862
 
 
 
 
 
 
 
 
 
 
ac97e5b
 
 
 
 
 
 
 
 
859a065
ac97e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892a74e
aa85862
7c36326
aa85862
 
5696fee
eefa44d
aa85862
ac97e5b
eefa44d
9781999
eefa44d
ac97e5b
 
aa85862
9781999
5696fee
9781999
 
 
 
 
eefa44d
aa85862
9781999
 
00dc59f
 
 
2bede7c
00dc59f
098f871
ec000c3
3ad22ce
4c4c78d
3ad22ce
 
 
 
 
4c4c78d
098f871
3ad22ce
098f871
 
4c4c78d
 
 
892a74e
3ad22ce
 
 
4c4c78d
 
3ad22ce
 
 
 
 
098f871
 
c360795
3ad22ce
2bede7c
925d15e
098f871
925d15e
 
b31944c
925d15e
 
2bede7c
c360795
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from huggingface_hub import login
from huggingface_hub import scan_cache_dir
from huggingface_hub import logging

from gradio_huggingfacehub_search import HuggingfaceHubSearch

from apscheduler.schedulers.background import BackgroundScheduler

from textwrap import dedent

import mlx_lm
from mlx_lm import convert

from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union

HF_TOKEN = os.environ.get("HF_TOKEN")

def clear_cache():
    scan = scan_cache_dir()
    to_delete = []
    for repo in scan.repos:
        if repo.repo_type == "model":
            to_delete.append([rev.commit_hash for rev in repo.revisions])

    scan.delete_revisions(*to_delete)

    print("Cache has been cleared")

def upload_to_hub(path, upload_repo, hf_path, token):
    
    card = ModelCard.load(hf_path)
    card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
    card.data.base_model = hf_path
    card.text = dedent(
        f"""
        # {upload_repo}

        The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was converted to MLX format from [{hf_path}](https://huggingface.co/{hf_path}) using mlx-lm version **{mlx_lm.__version__}**.

        ## Use with mlx

        ```bash
        pip install mlx-lm
        ```

        ```python
        from mlx_lm import load, generate

        model, tokenizer = load("{upload_repo}")

        prompt="hello"

        if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
            messages = [{{"role": "user", "content": prompt}}]
            prompt = tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )

        response = generate(model, tokenizer, prompt=prompt, verbose=True)
        ```
        """
    )
    card.save(os.path.join(path, "README.md"))

    logging.set_verbosity_info()

    api = HfApi()
    api.create_repo(repo_id=upload_repo, exist_ok=True)
    api.upload_folder(
        folder_path=path,
        repo_id=upload_repo,
        repo_type="model",
        multi_commits=True,
        multi_commits_verbose=True,
    )
    print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")    

def process_model(model_id, q_method,oauth_token: gr.OAuthToken | None):
    
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use MLX-my-repo")
    
    model_name = model_id.split('/')[-1]
    username = whoami(oauth_token.token)["name"]

    # login(token=oauth_token.token, add_to_git_credential=True)
    
    try:
        upload_repo = username + "/" + model_name + "-mlx"
        convert(model_id, quantize=True)
        upload_repo(path="mlx_model", upload_repo=upload_repo, hf_path=repo_id, token=oauth_token.token)
        clear_cache()
        return (
            f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
            "llama.png",
        )
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree("mlx_model", ignore_errors=True)
        clear_cache()
        print("Folder cleaned up successfully!")

css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo: 
    gr.Markdown("You must be logged in to use MLX-my-repo.")
    gr.LoginButton(min_width=250)

    model_id = HuggingfaceHubSearch(
        label="Hub Model ID",
        placeholder="Search for model id on Huggingface",
        search_type="model",
    )

    q_method = gr.Dropdown(
        ["Q4", "Q8"],
        label="Quantization Method",
        info="MLX quantization type",
        value="Q4",
        filterable=False,
        visible=True
    )
    
    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id,
            q_method,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own MLX Quants, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.",
        api_name=False
    )

def restart_space():
    HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)