Spaces:
Running
Running
Update app.py (#11)
Browse files- Update app.py (d301b9713e0200804df650ffe1f5ccb6794f2e13)
app.py
CHANGED
@@ -16,95 +16,19 @@ from apscheduler.schedulers.background import BackgroundScheduler
|
|
16 |
|
17 |
from textwrap import dedent
|
18 |
|
|
|
|
|
19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
|
21 |
-
def process_model(model_id, q_method,
|
22 |
if oauth_token.token is None:
|
23 |
-
raise ValueError("You must be logged in to use
|
24 |
model_name = model_id.split('/')[-1]
|
25 |
-
|
|
|
26 |
try:
|
27 |
-
|
28 |
-
|
29 |
-
dl_pattern = ["*.md", "*.json", "*.model"]
|
30 |
-
|
31 |
-
pattern = (
|
32 |
-
"*.safetensors"
|
33 |
-
if any(
|
34 |
-
file.path.endswith(".safetensors")
|
35 |
-
for file in api.list_repo_tree(
|
36 |
-
repo_id=model_id,
|
37 |
-
recursive=True,
|
38 |
-
)
|
39 |
-
)
|
40 |
-
else "*.bin"
|
41 |
-
)
|
42 |
-
|
43 |
-
dl_pattern += pattern
|
44 |
-
|
45 |
-
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
46 |
-
print("Model downloaded successfully!")
|
47 |
-
print(f"Current working directory: {os.getcwd()}")
|
48 |
-
print(f"Model directory contents: {os.listdir(model_name)}")
|
49 |
-
|
50 |
-
conversion_script = "convert_hf_to_gguf.py"
|
51 |
-
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
52 |
-
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
53 |
-
print(result)
|
54 |
-
if result.returncode != 0:
|
55 |
-
raise Exception(f"Error converting to fp16: {result.stderr}")
|
56 |
-
print("Model converted to fp16 successfully!")
|
57 |
-
print(f"Converted model path: {fp16}")
|
58 |
-
|
59 |
-
username = whoami(oauth_token.token)["name"]
|
60 |
-
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
61 |
-
quantized_gguf_path = quantized_gguf_name
|
62 |
-
|
63 |
-
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
64 |
-
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
65 |
-
if result.returncode != 0:
|
66 |
-
raise Exception(f"Error quantizing: {result.stderr}")
|
67 |
-
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
68 |
-
print(f"Quantized model path: {quantized_gguf_path}")
|
69 |
-
|
70 |
-
# Create empty repo
|
71 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
72 |
-
new_repo_id = new_repo_url.repo_id
|
73 |
-
print("Repo created successfully!", new_repo_url)
|
74 |
-
|
75 |
-
try:
|
76 |
-
card = ModelCard.load(model_id, token=oauth_token.token)
|
77 |
-
except:
|
78 |
-
card = ModelCard("")
|
79 |
-
if card.data.tags is None:
|
80 |
-
card.data.tags = []
|
81 |
-
card.data.tags.append("llama-cpp")
|
82 |
-
card.data.tags.append("gguf-my-repo")
|
83 |
-
card.data.base_model = model_id
|
84 |
-
card.text = dedent(
|
85 |
-
f"""
|
86 |
-
# {new_repo_id}
|
87 |
-
"""
|
88 |
-
)
|
89 |
-
card.save(f"README.md")
|
90 |
-
|
91 |
-
try:
|
92 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
93 |
-
api.upload_file(
|
94 |
-
path_or_fileobj=quantized_gguf_path,
|
95 |
-
path_in_repo=quantized_gguf_name,
|
96 |
-
repo_id=new_repo_id,
|
97 |
-
)
|
98 |
-
except Exception as e:
|
99 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
100 |
-
|
101 |
-
api.upload_file(
|
102 |
-
path_or_fileobj=f"README.md",
|
103 |
-
path_in_repo=f"README.md",
|
104 |
-
repo_id=new_repo_id,
|
105 |
-
)
|
106 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
107 |
-
|
108 |
return (
|
109 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
110 |
"llama.png",
|
@@ -112,7 +36,7 @@ def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken |
|
|
112 |
except Exception as e:
|
113 |
return (f"Error: {e}", "error.png")
|
114 |
finally:
|
115 |
-
shutil.rmtree(
|
116 |
print("Folder cleaned up successfully!")
|
117 |
|
118 |
css="""/* Custom CSS to allow scrolling */
|
@@ -139,18 +63,11 @@ with gr.Blocks(css=css) as demo:
|
|
139 |
)
|
140 |
|
141 |
|
142 |
-
private_repo = gr.Checkbox(
|
143 |
-
value=False,
|
144 |
-
label="Private Repo",
|
145 |
-
info="Create a private repo under your username."
|
146 |
-
)
|
147 |
-
|
148 |
iface = gr.Interface(
|
149 |
fn=process_model,
|
150 |
inputs=[
|
151 |
model_id,
|
152 |
q_method,
|
153 |
-
private_repo,
|
154 |
],
|
155 |
outputs=[
|
156 |
gr.Markdown(label="output"),
|
|
|
16 |
|
17 |
from textwrap import dedent
|
18 |
|
19 |
+
import mlx_lm import convert
|
20 |
+
|
21 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
22 |
|
23 |
+
def process_model(model_id, q_method,):
|
24 |
if oauth_token.token is None:
|
25 |
+
raise ValueError("You must be logged in to use GGUF-my-repo")
|
26 |
model_name = model_id.split('/')[-1]
|
27 |
+
username = whoami(oauth_token.token)["name"]
|
28 |
+
|
29 |
try:
|
30 |
+
upload_repo = username + "/" + model_name + "-mlx"
|
31 |
+
convert(model_id, quantize=True, upload_repo=upload_repo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return (
|
33 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
34 |
"llama.png",
|
|
|
36 |
except Exception as e:
|
37 |
return (f"Error: {e}", "error.png")
|
38 |
finally:
|
39 |
+
shutil.rmtree("mlx_model", ignore_errors=True)
|
40 |
print("Folder cleaned up successfully!")
|
41 |
|
42 |
css="""/* Custom CSS to allow scrolling */
|
|
|
63 |
)
|
64 |
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
iface = gr.Interface(
|
67 |
fn=process_model,
|
68 |
inputs=[
|
69 |
model_id,
|
70 |
q_method,
|
|
|
71 |
],
|
72 |
outputs=[
|
73 |
gr.Markdown(label="output"),
|