File size: 9,331 Bytes
691f8f6
 
f81db88
691f8f6
f81db88
691f8f6
 
 
 
d54d01e
691f8f6
f81db88
691f8f6
 
 
53dffc9
 
 
f81db88
 
53dffc9
 
 
 
 
 
 
 
 
 
 
f81db88
53dffc9
 
 
f81db88
 
31a75e1
53dffc9
31a75e1
53dffc9
31a75e1
 
 
 
53dffc9
 
31a75e1
 
53dffc9
 
 
 
 
 
31a75e1
 
 
 
53dffc9
 
31a75e1
 
 
53dffc9
 
31a75e1
53dffc9
31a75e1
 
8686715
 
53dffc9
8686715
53dffc9
691f8f6
914e393
53dffc9
c776952
 
 
 
ea6aad2
 
c776952
914e393
 
 
c776952
53dffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92a1e1
53dffc9
a269566
53dffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92a1e1
53dffc9
f81db88
53dffc9
 
d92a1e1
53dffc9
f81db88
 
 
53dffc9
 
 
 
31a75e1
53dffc9
 
691f8f6
 
53dffc9
3b420fc
c776952
914e393
c776952
dcbe609
53dffc9
 
5cdd2ae
53dffc9
5cdd2ae
53dffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2972d3
53dffc9
 
 
 
 
 
 
 
 
 
 
 
 
4481b1f
53dffc9
a92a26c
53dffc9
a92a26c
f81db88
a14ec14
53dffc9
 
 
914e393
53dffc9
 
efca0ea
c776952
 
 
 
a92a26c
c776952
43d4c68
c776952
 
 
 
 
 
 
43d4c68
53dffc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import pandas as pd
import numpy as np
import umap
import json
import matplotlib.pyplot as plt
import os
import scanpy as sc
import subprocess
import sys
from io import BytesIO
from sklearn.linear_model import LogisticRegression
from huggingface_hub import hf_hub_download


def load_and_predict_with_classifier(x, model_path, output_path, save):

    # Load the model parameters from the JSON file
    with open(model_path, 'r') as f:
        model_params = json.load(f)

    # Reconstruct the logistic regression model
    model_loaded = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=1000)
    model_loaded.coef_ = np.array(model_params["coef"])
    model_loaded.intercept_ = np.array(model_params["intercept"])
    model_loaded.classes_ = np.array(model_params["classes"])

    # output predictions
    y_pred = model_loaded.predict(x)

    # Convert the array to a Pandas DataFrame
    if save:
        df = pd.DataFrame(y_pred, columns=["predicted_cell_type"])
        df.to_csv(output_path, index=False, header=False)
    
    return y_pred

def plot_umap(adata):

    labels = pd.Categorical(adata.obs["cell_type"])

    reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
    embedding = reducer.fit_transform(adata.obsm["X_uce"])

    plt.figure(figsize=(10, 8))

    # Create the scatter plot
    scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)

    # Create a legend
    handles = []
    for i, cell_type in enumerate(labels.categories):
        handles.append(plt.Line2D([0], [0], marker='o', color='w', label=cell_type,
                                  markerfacecolor=plt.cm.Set1(i / len(labels.categories)), markersize=10))

    plt.legend(handles=handles, title='Cell Type')
    plt.title('UMAP projection of the data')
    plt.xlabel('UMAP1')
    plt.ylabel('UMAP2')
    
    # Save plot to a BytesIO object
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    
    # Read the image from BytesIO object
    img = plt.imread(buf, format='png')

    return img

def toggle_file_input(default_dataset):
    if default_dataset != "None":
        return gr.update(interactive=False)  # Disable the file input if a default dataset is selected
    else:
        return gr.update(interactive=True)  # Enable the file input if no default dataset is selected

def clone_repo():
    os.system('git clone https://github.com/minwoosun/UCE.git')

def main(input_file_path, species, default_dataset, default_dataset_1_path, default_dataset_2_path):

    BASE_PATH = '/home/user/app/UCE/'
    os.chdir(BASE_PATH)
    sys.path.append(BASE_PATH)

    # Set default dataset path
    default_dataset_1_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="100_pbmcs_proc_subset.h5ad")
    default_dataset_2_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="1k_pbmcs_proc_subset.h5ad")

    # If the user selects a default dataset, use that instead of the uploaded file
    if default_dataset == "PBMC 100 cells":
        input_file_path = default_dataset_1_path
    elif default_dataset == "PBMC 1000 cells":
        input_file_path = default_dataset_2_path

    ##############
    #     UCE    #
    ##############
    from evaluate import AnndataProcessor
    from accelerate import Accelerator

    model_loc = 'minwoosun/uce-100m'
    
    # Construct the command
    command = [
        'python', 
        BASE_PATH + 'eval_single_anndata.py', 
        '--adata_path', input_file_path, 
        '--dir', BASE_PATH, 
        '--model_loc', model_loc
    ]
    
    # Print the command for debugging
    print("Running command:", command)

    print("---> RUNNING UCE")
    result = subprocess.run(command, capture_output=True, text=True, check=True)
    print(result.stdout)
    print(result.stderr)
    print("---> FINSIH UCE")

    ################################
    #   Cell-type classification   #
    ################################

    # Set output file path
    file_name_with_ext = os.path.basename(input_file_path)
    file_name = os.path.splitext(file_name_with_ext)[0]
    pred_file = BASE_PATH + f"{file_name}_predictions.csv"
    model_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="tabula_sapiens_v1_logistic_regression_model_weights.json")

    file_name_with_ext = os.path.basename(input_file_path)
    file_name = os.path.splitext(file_name_with_ext)[0]
    output_file = BASE_PATH + f"{file_name}_uce_adata.h5ad"
    adata = sc.read_h5ad(output_file)
    x = adata.obsm['X_uce']

    y_pred = load_and_predict_with_classifier(x, model_path, pred_file, save=True)
    
    ##############
    #    UMAP    #
    ##############
    img = plot_umap(adata)
  
    return img, output_file, pred_file


if __name__ == "__main__":   

    BASE_PATH = '/home/user/app/UCE/'
    clone_repo()

    with gr.Blocks() as demo:
        gr.Markdown(
            '''
            <div style="text-align:center; margin-bottom:20px;">
                <span style="font-size:3em; font-weight:bold;">UCE 100M Demo 🦠</span>
            </div>
            <div style="text-align:center; margin-bottom:10px;">
                <span style="font-size:1.5em; font-weight:bold;">Universal Cell Embeddings: Zero-Shot Cell-Type Classification in Action!</span>
            </div>
            <div style="text-align:center; margin-bottom:20px;">
                <a href="https://github.com/minwoosun/UCE">
                    <img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://www.biorxiv.org/content/10.1101/2023.11.28.568918v1">
                    <img src="https://img.shields.io/badge/bioRxiv-2023.11.28.568918-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;">
                </a>
                <a href="https://colab.research.google.com/drive/1opud0BVWr76IM8UnGgTomVggui_xC4p0?usp=sharing">
                    <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" style="display:inline-block; margin-right:10px;">
                </a>
            </div>
            <div style="text-align:left; margin-bottom:20px;">
                Upload a `.h5ad` single cell gene expression file and select the species (Human/Mouse). 
                The demo will generate UMAP projections of the embeddings and allow you to download the embeddings for further analysis.
            </div>
            <div style="margin-bottom:20px;">
                <ol style="list-style:none; padding-left:0;">
                    <li>1. Upload your `.h5ad` file or select one of the default datasets (subset of 10x pbmc data)</li>
                    <li>2. Select the species</li>
                    <li>3. Click "Run" to view the UMAP scatter plot</li>
                    <li>4. Download the UCE embeddings and predicted cell-types</li>
                </ol>
            </div>
            <div style="text-align:left; line-height:1.8;">
                Please consider citing the following paper if you use this tool in your research:
            </div>
            <div style="text-align:left; line-height:1.8;">
                Rosen, Y., Roohani, Y., Agarwal, A., Samotorčan, L., Tabula Sapiens Consortium, Quake, S. R., & Leskovec, J. Universal Cell Embeddings: A Foundation Model for Cell Biology. bioRxiv. https://doi.org/10.1101/2023.11.28.568918
            </div>
            '''
        )

        # Define Gradio inputs and outputs
        file_input = gr.File(label="Upload a .h5ad single cell gene expression file or select a default dataset below")
        # species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
        with gr.Row():
            species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
            default_dataset_input = gr.Dropdown(choices=["None", "PBMC 100 cells", "PBMC 1000 cells"], label="Select default dataset")

        # Attach the `change` event to the dropdown
        default_dataset_input.change(
            toggle_file_input,
            inputs=[default_dataset_input],
            outputs=[file_input]
        )

        run_button = gr.Button("Run", elem_classes="run-button")
        
        # Arrange UMAP plot and file output side by side
        with gr.Row():
            image_output = gr.Image(type="numpy", label="UMAP_of_UCE_Embeddings")
            file_output = gr.File(label="Download embeddings")
            pred_output = gr.File(label="Download predictions")
    
        # Add the components and link to the function
        run_button.click(
            fn=main, 
            inputs=[file_input, species_input, default_dataset_input], 
            outputs=[image_output, file_output, pred_output]
        )

        # # Examples section
        # examples = [
        #     ["", "human", "PBMC 100 cells"],
        #     ["", "human", "PBMC 1000 cells"]

        # ]

        # gr.Examples(
        #     fn=main,
        #     examples=examples,
        #     inputs=[file_input, species_input, default_dataset_input],
        #     outputs=[image_output, file_output, pred_output],
        #     cache_examples=True
        # )

    demo.launch()