Update app.py
Browse files
app.py
CHANGED
@@ -13,150 +13,236 @@ from sklearn.linear_model import LogisticRegression
|
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
15 |
|
16 |
-
def
|
17 |
-
|
|
|
18 |
with open(model_path, 'r') as f:
|
19 |
model_params = json.load(f)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
"""Save predictions to a CSV file."""
|
32 |
-
df = pd.DataFrame(y_pred, columns=["predicted_cell_type"])
|
33 |
-
df.to_csv(output_path, index=False, header=False)
|
34 |
-
|
35 |
-
def load_and_predict_with_classifier(x, model_path, output_path, save=False):
|
36 |
-
"""Load model, predict, and optionally save predictions."""
|
37 |
-
model_params = load_model_params(model_path)
|
38 |
-
model = reconstruct_classifier(model_params)
|
39 |
-
y_pred = model.predict(x)
|
40 |
if save:
|
41 |
-
|
|
|
|
|
42 |
return y_pred
|
43 |
|
|
|
44 |
def plot_umap(adata):
|
45 |
-
|
46 |
labels = pd.Categorical(adata.obs["cell_type"])
|
|
|
47 |
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
|
48 |
embedding = reducer.fit_transform(adata.obsm["X_uce"])
|
49 |
|
50 |
plt.figure(figsize=(10, 8))
|
|
|
|
|
51 |
scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
plt.legend(handles=handles, title='Cell Type')
|
59 |
plt.title('UMAP projection of the data')
|
60 |
plt.xlabel('UMAP1')
|
61 |
plt.ylabel('UMAP2')
|
62 |
-
|
|
|
63 |
buf = BytesIO()
|
64 |
plt.savefig(buf, format='png')
|
65 |
buf.seek(0)
|
|
|
|
|
66 |
img = plt.imread(buf, format='png')
|
|
|
67 |
return img
|
68 |
|
|
|
69 |
def toggle_file_input(default_dataset):
|
70 |
-
"""Toggle file input based on dataset selection."""
|
71 |
if default_dataset != "None":
|
72 |
-
return gr.update(interactive=False)
|
73 |
else:
|
74 |
-
return gr.update(interactive=True)
|
75 |
|
76 |
-
def run_uce_model(input_file_path, model_dir, model_loc):
|
77 |
-
"""Run UCE model on the provided AnnData file."""
|
78 |
-
command = [
|
79 |
-
sys.executable,
|
80 |
-
os.path.join(model_dir, 'eval_single_anndata.py'),
|
81 |
-
'--adata_path', input_file_path,
|
82 |
-
'--dir', model_dir,
|
83 |
-
'--model_loc', model_loc
|
84 |
-
]
|
85 |
-
subprocess.run(command, check=True)
|
86 |
|
87 |
def main(input_file_path, species, default_dataset):
|
88 |
-
"""Main function to execute the demo logic."""
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
repo_dir = '/home/user/app/UCE'
|
93 |
-
if not os.path.exists(repo_dir):
|
94 |
-
subprocess.run(['git', 'clone', repo_url], check=True)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
#
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
x = adata.obsm['X_uce']
|
113 |
|
114 |
-
model_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="tabula_sapiens_v1_logistic_regression_model_weights.json")
|
115 |
-
pred_file = os.path.join(repo_dir, f"{os.path.splitext(os.path.basename(input_file_path))[0]}_predictions.csv")
|
116 |
y_pred = load_and_predict_with_classifier(x, model_path, pred_file, save=True)
|
117 |
-
|
118 |
-
|
|
|
|
|
119 |
img = plot_umap(adata)
|
|
|
|
|
120 |
|
121 |
-
return img, os.path.join(repo_dir, f"{os.path.splitext(os.path.basename(input_file_path))[0]}_uce_adata.h5ad"), pred_file
|
122 |
|
123 |
-
|
124 |
|
125 |
-
def create_demo():
|
126 |
-
"""Create and launch the Gradio demo."""
|
127 |
-
|
128 |
with gr.Blocks() as demo:
|
129 |
-
gr.Markdown(
|
|
|
130 |
<div style="text-align:center; margin-bottom:20px;">
|
131 |
-
<
|
132 |
-
<h2>Universal Cell Embeddings: Zero-Shot Cell-Type Classification in Action!</h2>
|
133 |
-
<div style="margin-top:10px;">
|
134 |
-
<a href="https://github.com/minwoosun/UCE"><img src="https://badges.aleen42.com/src/github.svg" alt="GitHub"></a>
|
135 |
-
<a href="https://www.biorxiv.org/content/10.1101/2023.11.28.568918v1"><img src="https://img.shields.io/badge/bioRxiv-2023.11.28.568918-green?style=plastic" alt="Paper"></a>
|
136 |
-
<a href="https://colab.research.google.com/drive/1opud0BVWr76IM8UnGgTomVggui_xC4p0?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
137 |
-
</div>
|
138 |
-
<p>Upload a `.h5ad` single cell gene expression file or select the species to generate UMAP projections and download the embeddings.</p>
|
139 |
</div>
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
file_input = gr.File(label="Upload a .h5ad single cell gene expression file or select a default dataset below")
|
144 |
-
species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
#
|
150 |
-
run_button = gr.Button("Run")
|
151 |
with gr.Row():
|
152 |
-
image_output = gr.Image(type="numpy", label="
|
153 |
file_output = gr.File(label="Download embeddings")
|
154 |
pred_output = gr.File(label="Download predictions")
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
#
|
157 |
-
run_button.click(
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
demo.launch()
|
160 |
|
161 |
-
|
162 |
-
create_demo()
|
|
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
15 |
|
16 |
+
def load_and_predict_with_classifier(x, model_path, output_path, save):
|
17 |
+
|
18 |
+
# Load the model parameters from the JSON file
|
19 |
with open(model_path, 'r') as f:
|
20 |
model_params = json.load(f)
|
21 |
+
|
22 |
+
# Reconstruct the logistic regression model
|
23 |
+
model_loaded = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=1000)
|
24 |
+
model_loaded.coef_ = np.array(model_params["coef"])
|
25 |
+
model_loaded.intercept_ = np.array(model_params["intercept"])
|
26 |
+
model_loaded.classes_ = np.array(model_params["classes"])
|
27 |
+
|
28 |
+
# output predictions
|
29 |
+
y_pred = model_loaded.predict(x)
|
30 |
+
|
31 |
+
# Convert the array to a Pandas DataFrame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
if save:
|
33 |
+
df = pd.DataFrame(y_pred, columns=["predicted_cell_type"])
|
34 |
+
df.to_csv(output_path, index=False, header=False)
|
35 |
+
|
36 |
return y_pred
|
37 |
|
38 |
+
|
39 |
def plot_umap(adata):
|
40 |
+
|
41 |
labels = pd.Categorical(adata.obs["cell_type"])
|
42 |
+
|
43 |
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
|
44 |
embedding = reducer.fit_transform(adata.obsm["X_uce"])
|
45 |
|
46 |
plt.figure(figsize=(10, 8))
|
47 |
+
|
48 |
+
# Create the scatter plot
|
49 |
scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)
|
50 |
|
51 |
+
# Create a legend
|
52 |
+
handles = []
|
53 |
+
for i, cell_type in enumerate(labels.categories):
|
54 |
+
handles.append(plt.Line2D([0], [0], marker='o', color='w', label=cell_type,
|
55 |
+
markerfacecolor=plt.cm.Set1(i / len(labels.categories)), markersize=10))
|
56 |
+
|
57 |
plt.legend(handles=handles, title='Cell Type')
|
58 |
plt.title('UMAP projection of the data')
|
59 |
plt.xlabel('UMAP1')
|
60 |
plt.ylabel('UMAP2')
|
61 |
+
|
62 |
+
# Save plot to a BytesIO object
|
63 |
buf = BytesIO()
|
64 |
plt.savefig(buf, format='png')
|
65 |
buf.seek(0)
|
66 |
+
|
67 |
+
# Read the image from BytesIO object
|
68 |
img = plt.imread(buf, format='png')
|
69 |
+
|
70 |
return img
|
71 |
|
72 |
+
|
73 |
def toggle_file_input(default_dataset):
|
|
|
74 |
if default_dataset != "None":
|
75 |
+
return gr.update(interactive=False) # Disable the file input if a default dataset is selected
|
76 |
else:
|
77 |
+
return gr.update(interactive=True) # Enable the file input if no default dataset is selected
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def main(input_file_path, species, default_dataset):
|
|
|
81 |
|
82 |
+
# Get the current working directory
|
83 |
+
current_working_directory = os.getcwd()
|
|
|
|
|
|
|
84 |
|
85 |
+
# Print the current working directory
|
86 |
+
print("Current Working Directory:", current_working_directory)
|
87 |
+
|
88 |
+
# clone and cd into UCE repo
|
89 |
+
os.system('git clone https://github.com/minwoosun/UCE.git')
|
90 |
+
os.chdir('/home/user/app/UCE')
|
91 |
+
|
92 |
+
# Get the current working directory
|
93 |
+
current_working_directory = os.getcwd()
|
94 |
|
95 |
+
# Print the current working directory
|
96 |
+
print("Current Working Directory:", current_working_directory)
|
97 |
|
98 |
+
# Specify the path to the directory you want to add
|
99 |
+
new_directory = "/home/user/app/UCE"
|
100 |
+
|
101 |
+
# Add the directory to the Python path
|
102 |
+
sys.path.append(new_directory)
|
103 |
+
|
104 |
+
# Set default dataset path
|
105 |
+
default_dataset_1_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="100_pbmcs_proc_subset.h5ad")
|
106 |
+
default_dataset_2_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="1k_pbmcs_proc_subset.h5ad")
|
107 |
+
|
108 |
+
# If the user selects a default dataset, use that instead of the uploaded file
|
109 |
+
if default_dataset == "PBMC 100 cells":
|
110 |
+
input_file_path = default_dataset_1_path
|
111 |
+
elif default_dataset == "PBMC 1000 cells":
|
112 |
+
input_file_path = default_dataset_2_path
|
113 |
+
|
114 |
+
##############
|
115 |
+
# UCE #
|
116 |
+
##############
|
117 |
+
from evaluate import AnndataProcessor
|
118 |
+
from accelerate import Accelerator
|
119 |
+
|
120 |
+
dir_path = '/home/user/app/UCE/'
|
121 |
+
model_loc = 'minwoosun/uce-100m'
|
122 |
+
|
123 |
+
print(input_file_path)
|
124 |
+
print(dir_path)
|
125 |
+
print(model_loc)
|
126 |
+
|
127 |
+
# Construct the command
|
128 |
+
command = [
|
129 |
+
'python',
|
130 |
+
'/home/user/app/UCE/eval_single_anndata.py',
|
131 |
+
'--adata_path', input_file_path,
|
132 |
+
'--dir', dir_path,
|
133 |
+
'--model_loc', model_loc
|
134 |
+
]
|
135 |
+
|
136 |
+
# Print the command for debugging
|
137 |
+
print("Running command:", command)
|
138 |
+
|
139 |
+
print("---> RUNNING UCE")
|
140 |
+
result = subprocess.run(command, capture_output=True, text=True, check=True)
|
141 |
+
print(result.stdout)
|
142 |
+
print(result.stderr)
|
143 |
+
print("---> FINSIH UCE")
|
144 |
+
|
145 |
+
################################
|
146 |
+
# Cell-type classification #
|
147 |
+
################################
|
148 |
+
|
149 |
+
# Set output file path
|
150 |
+
file_name_with_ext = os.path.basename(input_file_path)
|
151 |
+
file_name = os.path.splitext(file_name_with_ext)[0]
|
152 |
+
pred_file = "/home/user/app/UCE/" + f"{file_name}_predictions.csv"
|
153 |
+
model_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="tabula_sapiens_v1_logistic_regression_model_weights.json")
|
154 |
|
155 |
+
file_name_with_ext = os.path.basename(input_file_path)
|
156 |
+
file_name = os.path.splitext(file_name_with_ext)[0]
|
157 |
+
output_file = "/home/user/app/UCE/" + f"{file_name}_uce_adata.h5ad"
|
158 |
+
adata = sc.read_h5ad(output_file)
|
159 |
x = adata.obsm['X_uce']
|
160 |
|
|
|
|
|
161 |
y_pred = load_and_predict_with_classifier(x, model_path, pred_file, save=True)
|
162 |
+
|
163 |
+
##############
|
164 |
+
# UMAP #
|
165 |
+
##############
|
166 |
img = plot_umap(adata)
|
167 |
+
|
168 |
+
return img, output_file, pred_file
|
169 |
|
|
|
170 |
|
171 |
+
if __name__ == "__main__":
|
172 |
|
|
|
|
|
|
|
173 |
with gr.Blocks() as demo:
|
174 |
+
gr.Markdown(
|
175 |
+
'''
|
176 |
<div style="text-align:center; margin-bottom:20px;">
|
177 |
+
<span style="font-size:3em; font-weight:bold;">UCE 100M Demo 🦠</span>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
</div>
|
179 |
+
<div style="text-align:center; margin-bottom:10px;">
|
180 |
+
<span style="font-size:1.5em; font-weight:bold;">Universal Cell Embeddings: Zero-Shot Cell-Type Classification in Action!</span>
|
181 |
+
</div>
|
182 |
+
<div style="text-align:center; margin-bottom:20px;">
|
183 |
+
<a href="https://github.com/minwoosun/UCE">
|
184 |
+
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;">
|
185 |
+
</a>
|
186 |
+
<a href="https://www.biorxiv.org/content/10.1101/2023.11.28.568918v1">
|
187 |
+
<img src="https://img.shields.io/badge/bioRxiv-2023.11.28.568918-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;">
|
188 |
+
</a>
|
189 |
+
<a href="https://colab.research.google.com/drive/1opud0BVWr76IM8UnGgTomVggui_xC4p0?usp=sharing">
|
190 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" style="display:inline-block; margin-right:10px;">
|
191 |
+
</a>
|
192 |
+
</div>
|
193 |
+
<div style="text-align:left; margin-bottom:20px;">
|
194 |
+
Upload a `.h5ad` single cell gene expression file and select the species (Human/Mouse).
|
195 |
+
The demo will generate UMAP projections of the embeddings and allow you to download the embeddings for further analysis.
|
196 |
+
</div>
|
197 |
+
<div style="margin-bottom:20px;">
|
198 |
+
<ol style="list-style:none; padding-left:0;">
|
199 |
+
<li>1. Upload your `.h5ad` file or select one of the default datasets (subset of 10x pbmc data)</li>
|
200 |
+
<li>2. Select the species</li>
|
201 |
+
<li>3. Click "Run" to view the UMAP scatter plot</li>
|
202 |
+
<li>4. Download the UCE embeddings and predicted cell-types</li>
|
203 |
+
</ol>
|
204 |
+
</div>
|
205 |
+
<div style="text-align:left; line-height:1.8;">
|
206 |
+
Please consider citing the following paper if you use this tool in your research:
|
207 |
+
</div>
|
208 |
+
<div style="text-align:left; line-height:1.8;">
|
209 |
+
Rosen, Y., Roohani, Y., Agarwal, A., Samotorčan, L., Tabula Sapiens Consortium, Quake, S. R., & Leskovec, J. Universal Cell Embeddings: A Foundation Model for Cell Biology. bioRxiv. https://doi.org/10.1101/2023.11.28.568918
|
210 |
+
</div>
|
211 |
+
'''
|
212 |
+
)
|
213 |
+
|
214 |
+
# Define Gradio inputs and outputs
|
215 |
file_input = gr.File(label="Upload a .h5ad single cell gene expression file or select a default dataset below")
|
216 |
+
# species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
|
217 |
+
with gr.Row():
|
218 |
+
species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
|
219 |
+
default_dataset_input = gr.Dropdown(choices=["None", "PBMC 100 cells", "PBMC 1000 cells"], label="Select default dataset")
|
220 |
+
|
221 |
+
# Attach the `change` event to the dropdown
|
222 |
+
default_dataset_input.change(
|
223 |
+
toggle_file_input,
|
224 |
+
inputs=[default_dataset_input],
|
225 |
+
outputs=[file_input]
|
226 |
+
)
|
227 |
+
|
228 |
+
run_button = gr.Button("Run", elem_classes="run-button")
|
229 |
|
230 |
+
# Arrange UMAP plot and file output side by side
|
|
|
231 |
with gr.Row():
|
232 |
+
image_output = gr.Image(type="numpy", label="UMAP_of_UCE_Embeddings")
|
233 |
file_output = gr.File(label="Download embeddings")
|
234 |
pred_output = gr.File(label="Download predictions")
|
235 |
+
|
236 |
+
print(image_output)
|
237 |
+
print(file_output)
|
238 |
+
print(pred_output)
|
239 |
|
240 |
+
# Add the components and link to the function
|
241 |
+
run_button.click(
|
242 |
+
fn=main,
|
243 |
+
inputs=[file_input, species_input, default_dataset_input],
|
244 |
+
outputs=[image_output, file_output, pred_output]
|
245 |
+
)
|
246 |
|
|
|
247 |
|
248 |
+
demo.launch()
|
|