Spaces:
Build error
Build error
import torch | |
import auraloss | |
import torchaudio | |
from itertools import chain | |
import pytorch_lightning as pl | |
from argparse import ArgumentParser | |
from typing import Tuple, List, Dict | |
import deepafx_st.utils as utils | |
from deepafx_st.utils import DSPMode | |
from deepafx_st.data.dataset import AudioDataset | |
from deepafx_st.models.encoder import SpectralEncoder | |
from deepafx_st.models.controller import StyleTransferController | |
from deepafx_st.processors.spsa.channel import SPSAChannel | |
from deepafx_st.processors.spsa.eps_scheduler import EpsilonScheduler | |
from deepafx_st.processors.proxy.channel import ProxyChannel | |
from deepafx_st.processors.autodiff.channel import AutodiffChannel | |
class System(pl.LightningModule): | |
def __init__( | |
self, | |
ext="wav", | |
dsp_sample_rate=24000, | |
**kwargs, | |
): | |
super().__init__() | |
self.save_hyperparameters() | |
self.eps_scheduler = EpsilonScheduler( | |
self.hparams.spsa_epsilon, | |
self.hparams.spsa_patience, | |
self.hparams.spsa_factor, | |
self.hparams.spsa_verbose, | |
) | |
self.hparams.dsp_mode = DSPMode.NONE | |
# first construct the processor, since this will dictate encoder | |
if self.hparams.processor_model == "spsa": | |
self.processor = SPSAChannel( | |
self.hparams.dsp_sample_rate, | |
self.hparams.spsa_parallel, | |
self.hparams.batch_size, | |
) | |
elif self.hparams.processor_model == "autodiff": | |
self.processor = AutodiffChannel(self.hparams.dsp_sample_rate) | |
elif self.hparams.processor_model == "proxy0": | |
# print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts) | |
self.hparams.dsp_mode = DSPMode.NONE | |
self.processor = ProxyChannel( | |
self.hparams.proxy_ckpts, | |
self.hparams.freeze_proxies, | |
self.hparams.dsp_mode, | |
sample_rate=self.hparams.dsp_sample_rate, | |
) | |
elif self.hparams.processor_model == "proxy1": | |
# print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts) | |
self.hparams.dsp_mode = DSPMode.INFER | |
self.processor = ProxyChannel( | |
self.hparams.proxy_ckpts, | |
self.hparams.freeze_proxies, | |
self.hparams.dsp_mode, | |
sample_rate=self.hparams.dsp_sample_rate, | |
) | |
elif self.hparams.processor_model == "proxy2": | |
# print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts) | |
self.hparams.dsp_mode = DSPMode.TRAIN_INFER | |
self.processor = ProxyChannel( | |
self.hparams.proxy_ckpts, | |
self.hparams.freeze_proxies, | |
self.hparams.dsp_mode, | |
sample_rate=self.hparams.dsp_sample_rate, | |
) | |
elif self.hparams.processor_model == "tcn1": | |
# self.processor = ConditionalTCN(self.hparams.sample_rate) | |
self.hparams.dsp_mode = DSPMode.NONE | |
self.processor = ProxyChannel( | |
[], | |
freeze_proxies=False, | |
dsp_mode=self.hparams.dsp_mode, | |
tcn_nblocks=self.hparams.tcn_nblocks, | |
tcn_dilation_growth=self.hparams.tcn_dilation_growth, | |
tcn_channel_width=self.hparams.tcn_channel_width, | |
tcn_kernel_size=self.hparams.tcn_kernel_size, | |
num_tcns=1, | |
sample_rate=self.hparams.sample_rate, | |
) | |
elif self.hparams.processor_model == "tcn2": | |
self.hparams.dsp_mode = DSPMode.NONE | |
self.processor = ProxyChannel( | |
[], | |
freeze_proxies=False, | |
dsp_mode=self.hparams.dsp_mode, | |
tcn_nblocks=self.hparams.tcn_nblocks, | |
tcn_dilation_growth=self.hparams.tcn_dilation_growth, | |
tcn_channel_width=self.hparams.tcn_channel_width, | |
tcn_kernel_size=self.hparams.tcn_kernel_size, | |
num_tcns=2, | |
sample_rate=self.hparams.sample_rate, | |
) | |
else: | |
raise ValueError(f"Invalid processor_model: {self.hparams.processor_model}") | |
if self.hparams.encoder_ckpt is not None: | |
# load encoder weights from a pre-trained system | |
system = System.load_from_checkpoint(self.hparams.encoder_ckpt) | |
self.encoder = system.encoder | |
self.hparams.encoder_embed_dim = system.encoder.embed_dim | |
else: | |
self.encoder = SpectralEncoder( | |
self.processor.num_control_params, | |
self.hparams.sample_rate, | |
encoder_model=self.hparams.encoder_model, | |
embed_dim=self.hparams.encoder_embed_dim, | |
width_mult=self.hparams.encoder_width_mult, | |
) | |
if self.hparams.encoder_freeze: | |
for param in self.encoder.parameters(): | |
param.requires_grad = False | |
self.controller = StyleTransferController( | |
self.processor.num_control_params, | |
self.hparams.encoder_embed_dim, | |
) | |
if len(self.hparams.recon_losses) != len(self.hparams.recon_loss_weights): | |
raise ValueError("Must supply same number of weights as losses.") | |
self.recon_losses = torch.nn.ModuleDict() | |
for recon_loss in self.hparams.recon_losses: | |
if recon_loss == "mrstft": | |
self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss( | |
fft_sizes=[32, 128, 512, 2048, 8192, 32768], | |
hop_sizes=[16, 64, 256, 1024, 4096, 16384], | |
win_lengths=[32, 128, 512, 2048, 8192, 32768], | |
w_sc=0.0, | |
w_phs=0.0, | |
w_lin_mag=1.0, | |
w_log_mag=1.0, | |
) | |
elif recon_loss == "mrstft-md": | |
self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss( | |
fft_sizes=[128, 512, 2048, 8192], | |
hop_sizes=[32, 128, 512, 2048], # 1 / 4 | |
win_lengths=[128, 512, 2048, 8192], | |
w_sc=0.0, | |
w_phs=0.0, | |
w_lin_mag=1.0, | |
w_log_mag=1.0, | |
) | |
elif recon_loss == "mrstft-sm": | |
self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss( | |
fft_sizes=[512, 2048, 8192], | |
hop_sizes=[256, 1024, 4096], # 1 / 4 | |
win_lengths=[512, 2048, 8192], | |
w_sc=0.0, | |
w_phs=0.0, | |
w_lin_mag=1.0, | |
w_log_mag=1.0, | |
) | |
elif recon_loss == "melfft": | |
self.recon_losses[recon_loss] = auraloss.freq.MelSTFTLoss( | |
self.hparams.sample_rate, | |
fft_size=self.hparams.train_length, | |
hop_size=self.hparams.train_length // 2, | |
win_length=self.hparams.train_length, | |
n_mels=128, | |
w_sc=0.0, | |
device="cuda" if self.hparams.gpus > 0 else "cpu", | |
) | |
elif recon_loss == "melstft": | |
self.recon_losses[recon_loss] = auraloss.freq.MelSTFTLoss( | |
self.hparams.sample_rate, | |
device="cuda" if self.hparams.gpus > 0 else "cpu", | |
) | |
elif recon_loss == "l1": | |
self.recon_losses[recon_loss] = torch.nn.L1Loss() | |
elif recon_loss == "sisdr": | |
self.recon_losses[recon_loss] = auraloss.time.SISDRLoss() | |
else: | |
raise ValueError( | |
f"Invalid reconstruction loss: {self.hparams.recon_losses}" | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
y: torch.Tensor = None, | |
e_y: torch.Tensor = None, | |
z: torch.Tensor = None, | |
dsp_mode: DSPMode = DSPMode.NONE, | |
analysis_length: int = 0, | |
sample_rate: int = 24000, | |
): | |
"""Forward pass through the system subnetworks. | |
Args: | |
x (tensor): Input audio tensor with shape (batch x 1 x samples) | |
y (tensor): Target audio tensor with shape (batch x 1 x samples) | |
e_y (tensor): Target embedding with shape (batch x edim) | |
z (tensor): Bottleneck latent. | |
dsp_mode (DSPMode): Mode of operation for the DSP blocks. | |
analysis_length (optional, int): Only analyze the first N samples. | |
sample_rate (optional, int): Desired sampling rate for the DSP blocks. | |
You must supply target audio `y`, `z`, or an embedding for the target `e_y`. | |
Returns: | |
y_hat (tensor): Output audio. | |
p (tensor): | |
e (tensor): | |
""" | |
bs, chs, samp = x.size() | |
if sample_rate != self.hparams.sample_rate: | |
x_enc = torchaudio.transforms.Resample( | |
sample_rate, self.hparams.sample_rate | |
).to(x.device)(x) | |
if y is not None: | |
y_enc = torchaudio.transforms.Resample( | |
sample_rate, self.hparams.sample_rate | |
).to(x.device)(y) | |
else: | |
x_enc = x | |
y_enc = y | |
if analysis_length > 0: | |
x_enc = x_enc[..., :analysis_length] | |
if y is not None: | |
y_enc = y_enc[..., :analysis_length] | |
e_x = self.encoder(x_enc) # generate latent embedding for input | |
if y is not None: | |
e_y = self.encoder(y_enc) # generate latent embedding for target | |
elif e_y is None: | |
raise RuntimeError("Must supply y, z, or e_y. None supplied.") | |
# learnable comparision | |
p = self.controller(e_x, e_y, z=z) | |
# process audio conditioned on parameters | |
# if there are multiple channels process them using same parameters | |
y_hat = torch.zeros(x.shape).type_as(x) | |
for ch_idx in range(chs): | |
y_hat_ch = self.processor( | |
x[:, ch_idx : ch_idx + 1, :], | |
p, | |
epsilon=self.eps_scheduler.epsilon, | |
dsp_mode=dsp_mode, | |
sample_rate=sample_rate, | |
) | |
y_hat[:, ch_idx : ch_idx + 1, :] = y_hat_ch | |
return y_hat, p, e_x | |
def common_paired_step( | |
self, | |
batch: Tuple, | |
batch_idx: int, | |
optimizer_idx: int = 0, | |
train: bool = False, | |
): | |
"""Model step used for validation and training. | |
Args: | |
batch (Tuple[Tensor, Tensor]): Batch items containing input audio (x) and target audio (y). | |
batch_idx (int): Index of the batch within the current epoch. | |
optimizer_idx (int): Index of the optimizer, this step is called once for each optimizer. | |
The firs optimizer corresponds to the generator and the second optimizer, | |
corresponds to the adversarial loss (when in use). | |
train (bool): Whether step is called during training (True) or validation (False). | |
""" | |
x, y = batch | |
loss = 0 | |
dsp_mode = self.hparams.dsp_mode | |
if train and dsp_mode.INFER.name == DSPMode.INFER.name: | |
dsp_mode = DSPMode.NONE | |
# proces input audio through model | |
if self.hparams.style_transfer: | |
length = x.shape[-1] | |
x_A = x[..., : length // 2] | |
x_B = x[..., length // 2 :] | |
y_A = y[..., : length // 2] | |
y_B = y[..., length // 2 :] | |
if torch.rand(1).sum() > 0.5: | |
y_ref = y_B | |
y = y_A | |
x = x_A | |
else: | |
y_ref = y_A | |
y = y_B | |
x = x_B | |
y_hat, p, e = self(x, y=y_ref, dsp_mode=dsp_mode) | |
else: | |
y_ref = None | |
y_hat, p, e = self(x, dsp_mode=dsp_mode) | |
# compute reconstruction loss terms | |
for loss_idx, (loss_name, recon_loss_fn) in enumerate( | |
self.recon_losses.items() | |
): | |
temp_loss = recon_loss_fn(y_hat, y) # reconstruction loss | |
loss += float(self.hparams.recon_loss_weights[loss_idx]) * temp_loss | |
self.log( | |
("train" if train else "val") + f"_loss/{loss_name}", | |
temp_loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
# log the overall aggregate loss | |
self.log( | |
("train" if train else "val") + "_loss/loss", | |
loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=False, | |
logger=True, | |
sync_dist=True, | |
) | |
# store audio data | |
data_dict = { | |
"x": x.cpu(), | |
"y": y.cpu(), | |
"p": p.cpu(), | |
"e": e.cpu(), | |
"y_hat": y_hat.cpu(), | |
} | |
if y_ref is not None: | |
data_dict["y_ref"] = y_ref.cpu() | |
return loss, data_dict | |
def training_step(self, batch, batch_idx, optimizer_idx=0): | |
loss, _ = self.common_paired_step( | |
batch, | |
batch_idx, | |
optimizer_idx, | |
train=True, | |
) | |
return loss | |
def training_epoch_end(self, training_step_outputs): | |
if self.hparams.spsa_schedule and self.hparams.processor_model == "spsa": | |
self.eps_scheduler.step( | |
self.trainer.callback_metrics[self.hparams.train_monitor], | |
) | |
def validation_step(self, batch, batch_idx): | |
loss, data_dict = self.common_paired_step(batch, batch_idx) | |
return data_dict | |
def optimizer_step( | |
self, | |
epoch, | |
batch_idx, | |
optimizer, | |
optimizer_idx, | |
optimizer_closure, | |
on_tpu=False, | |
using_native_amp=False, | |
using_lbfgs=False, | |
): | |
if optimizer_idx == 0: | |
optimizer.step(closure=optimizer_closure) | |
def configure_optimizers(self): | |
# we need additional optimizer for the discriminator | |
optimizers = [] | |
g_optimizer = torch.optim.Adam( | |
chain( | |
self.encoder.parameters(), | |
self.processor.parameters(), | |
self.controller.parameters(), | |
), | |
lr=self.hparams.lr, | |
betas=(0.9, 0.999), | |
) | |
optimizers.append(g_optimizer) | |
g_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
g_optimizer, | |
patience=self.hparams.lr_patience, | |
verbose=True, | |
) | |
ms1 = int(self.hparams.max_epochs * 0.8) | |
ms2 = int(self.hparams.max_epochs * 0.95) | |
print( | |
"Learning rate schedule:", | |
f"0 {self.hparams.lr:0.2e} -> ", | |
f"{ms1} {self.hparams.lr*0.1:0.2e} -> ", | |
f"{ms2} {self.hparams.lr*0.01:0.2e}", | |
) | |
g_scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
g_optimizer, | |
milestones=[ms1, ms2], | |
gamma=0.1, | |
) | |
lr_schedulers = { | |
"scheduler": g_scheduler, | |
} | |
return optimizers, lr_schedulers | |
def train_dataloader(self): | |
train_dataset = AudioDataset( | |
self.hparams.audio_dir, | |
subset="train", | |
train_frac=self.hparams.train_frac, | |
half=self.hparams.half, | |
length=self.hparams.train_length, | |
input_dirs=self.hparams.input_dirs, | |
random_scale_input=self.hparams.random_scale_input, | |
random_scale_target=self.hparams.random_scale_target, | |
buffer_size_gb=self.hparams.buffer_size_gb, | |
buffer_reload_rate=self.hparams.buffer_reload_rate, | |
num_examples_per_epoch=self.hparams.train_examples_per_epoch, | |
augmentations={ | |
"pitch": {"sr": self.hparams.sample_rate}, | |
"tempo": {"sr": self.hparams.sample_rate}, | |
}, | |
freq_corrupt=self.hparams.freq_corrupt, | |
drc_corrupt=self.hparams.drc_corrupt, | |
ext=self.hparams.ext, | |
) | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
train_dataset, | |
num_workers=self.hparams.num_workers, | |
batch_size=self.hparams.batch_size, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
persistent_workers=True, | |
timeout=60, | |
) | |
def val_dataloader(self): | |
val_dataset = AudioDataset( | |
self.hparams.audio_dir, | |
subset="val", | |
half=self.hparams.half, | |
train_frac=self.hparams.train_frac, | |
length=self.hparams.val_length, | |
input_dirs=self.hparams.input_dirs, | |
buffer_size_gb=self.hparams.buffer_size_gb, | |
buffer_reload_rate=self.hparams.buffer_reload_rate, | |
random_scale_input=self.hparams.random_scale_input, | |
random_scale_target=self.hparams.random_scale_target, | |
num_examples_per_epoch=self.hparams.val_examples_per_epoch, | |
augmentations={}, | |
freq_corrupt=self.hparams.freq_corrupt, | |
drc_corrupt=self.hparams.drc_corrupt, | |
ext=self.hparams.ext, | |
) | |
self.val_dataset = val_dataset | |
g = torch.Generator() | |
g.manual_seed(0) | |
return torch.utils.data.DataLoader( | |
val_dataset, | |
num_workers=1, | |
batch_size=self.hparams.batch_size, | |
worker_init_fn=utils.seed_worker, | |
generator=g, | |
pin_memory=True, | |
persistent_workers=True, | |
timeout=60, | |
) | |
def shutdown(self): | |
del self.processor | |
# add any model hyperparameters here | |
def add_model_specific_args(parent_parser): | |
parser = ArgumentParser(parents=[parent_parser], add_help=False) | |
# --- Training --- | |
parser.add_argument("--batch_size", type=int, default=32) | |
parser.add_argument("--lr", type=float, default=3e-4) | |
parser.add_argument("--lr_patience", type=int, default=20) | |
parser.add_argument("--recon_losses", nargs="+", default=["l1"]) | |
parser.add_argument("--recon_loss_weights", nargs="+", default=[1.0]) | |
# --- Controller --- | |
parser.add_argument( | |
"--processor_model", | |
type=str, | |
help="autodiff, spsa, tcn1, tcn2, proxy0, proxy1, proxy2", | |
) | |
parser.add_argument("--controller_hidden_dim", type=int, default=256) | |
parser.add_argument("--style_transfer", action="store_true") | |
# --- Encoder --- | |
parser.add_argument("--encoder_model", type=str, default="mobilenet_v2") | |
parser.add_argument("--encoder_embed_dim", type=int, default=128) | |
parser.add_argument("--encoder_width_mult", type=int, default=2) | |
parser.add_argument("--encoder_ckpt", type=str, default=None) | |
parser.add_argument("--encoder_freeze", action="store_true", default=False) | |
# --- TCN --- | |
parser.add_argument("--tcn_causal", action="store_true") | |
parser.add_argument("--tcn_nblocks", type=int, default=4) | |
parser.add_argument("--tcn_dilation_growth", type=int, default=8) | |
parser.add_argument("--tcn_channel_width", type=int, default=32) | |
parser.add_argument("--tcn_kernel_size", type=int, default=13) | |
# --- SPSA --- | |
parser.add_argument("--plugin_config_file", type=str, default=None) | |
parser.add_argument("--spsa_epsilon", type=float, default=0.001) | |
parser.add_argument("--spsa_schedule", action="store_true") | |
parser.add_argument("--spsa_patience", type=int, default=10) | |
parser.add_argument("--spsa_verbose", action="store_true") | |
parser.add_argument("--spsa_factor", type=float, default=0.5) | |
parser.add_argument("--spsa_parallel", action="store_true") | |
# --- Proxy ---- | |
parser.add_argument("--proxy_ckpts", nargs="+") | |
parser.add_argument("--freeze_proxies", action="store_true", default=False) | |
parser.add_argument("--use_dsp", action="store_true", default=False) | |
parser.add_argument("--dsp_mode", choices=DSPMode, type=DSPMode) | |
# --- Dataset --- | |
parser.add_argument("--audio_dir", type=str) | |
parser.add_argument("--ext", type=str, default="wav") | |
parser.add_argument("--input_dirs", nargs="+") | |
parser.add_argument("--buffer_reload_rate", type=int, default=1000) | |
parser.add_argument("--buffer_size_gb", type=float, default=1.0) | |
parser.add_argument("--sample_rate", type=int, default=24000) | |
parser.add_argument("--dsp_sample_rate", type=int, default=24000) | |
parser.add_argument("--shuffle", type=bool, default=True) | |
parser.add_argument("--random_scale_input", action="store_true") | |
parser.add_argument("--random_scale_target", action="store_true") | |
parser.add_argument("--freq_corrupt", action="store_true") | |
parser.add_argument("--drc_corrupt", action="store_true") | |
parser.add_argument("--train_length", type=int, default=65536) | |
parser.add_argument("--train_frac", type=float, default=0.8) | |
parser.add_argument("--half", action="store_true") | |
parser.add_argument("--train_examples_per_epoch", type=int, default=10000) | |
parser.add_argument("--val_length", type=int, default=131072) | |
parser.add_argument("--val_examples_per_epoch", type=int, default=1000) | |
parser.add_argument("--num_workers", type=int, default=16) | |
return parser | |