File size: 21,869 Bytes
c983126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import torch
import auraloss
import torchaudio
from itertools import chain
import pytorch_lightning as pl
from argparse import ArgumentParser
from typing import Tuple, List, Dict

import deepafx_st.utils as utils
from deepafx_st.utils import DSPMode
from deepafx_st.data.dataset import AudioDataset
from deepafx_st.models.encoder import SpectralEncoder
from deepafx_st.models.controller import StyleTransferController
from deepafx_st.processors.spsa.channel import SPSAChannel
from deepafx_st.processors.spsa.eps_scheduler import EpsilonScheduler
from deepafx_st.processors.proxy.channel import ProxyChannel
from deepafx_st.processors.autodiff.channel import AutodiffChannel


class System(pl.LightningModule):
    def __init__(
        self,
        ext="wav",
        dsp_sample_rate=24000,
        **kwargs,
    ):
        super().__init__()
        self.save_hyperparameters()

        self.eps_scheduler = EpsilonScheduler(
            self.hparams.spsa_epsilon,
            self.hparams.spsa_patience,
            self.hparams.spsa_factor,
            self.hparams.spsa_verbose,
        )

        self.hparams.dsp_mode = DSPMode.NONE

        # first construct the processor, since this will dictate encoder
        if self.hparams.processor_model == "spsa":
            self.processor = SPSAChannel(
                self.hparams.dsp_sample_rate,
                self.hparams.spsa_parallel,
                self.hparams.batch_size,
            )
        elif self.hparams.processor_model == "autodiff":
            self.processor = AutodiffChannel(self.hparams.dsp_sample_rate)
        elif self.hparams.processor_model == "proxy0":
            # print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts)
            self.hparams.dsp_mode = DSPMode.NONE
            self.processor = ProxyChannel(
                self.hparams.proxy_ckpts,
                self.hparams.freeze_proxies,
                self.hparams.dsp_mode,
                sample_rate=self.hparams.dsp_sample_rate,
            )
        elif self.hparams.processor_model == "proxy1":
            # print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts)
            self.hparams.dsp_mode = DSPMode.INFER
            self.processor = ProxyChannel(
                self.hparams.proxy_ckpts,
                self.hparams.freeze_proxies,
                self.hparams.dsp_mode,
                sample_rate=self.hparams.dsp_sample_rate,
            )
        elif self.hparams.processor_model == "proxy2":
            # print('self.hparams.proxy_ckpts,',self.hparams.proxy_ckpts)
            self.hparams.dsp_mode = DSPMode.TRAIN_INFER
            self.processor = ProxyChannel(
                self.hparams.proxy_ckpts,
                self.hparams.freeze_proxies,
                self.hparams.dsp_mode,
                sample_rate=self.hparams.dsp_sample_rate,
            )
        elif self.hparams.processor_model == "tcn1":
            # self.processor = ConditionalTCN(self.hparams.sample_rate)
            self.hparams.dsp_mode = DSPMode.NONE
            self.processor = ProxyChannel(
                [],
                freeze_proxies=False,
                dsp_mode=self.hparams.dsp_mode,
                tcn_nblocks=self.hparams.tcn_nblocks,
                tcn_dilation_growth=self.hparams.tcn_dilation_growth,
                tcn_channel_width=self.hparams.tcn_channel_width,
                tcn_kernel_size=self.hparams.tcn_kernel_size,
                num_tcns=1,
                sample_rate=self.hparams.sample_rate,
            )
        elif self.hparams.processor_model == "tcn2":
            self.hparams.dsp_mode = DSPMode.NONE
            self.processor = ProxyChannel(
                [],
                freeze_proxies=False,
                dsp_mode=self.hparams.dsp_mode,
                tcn_nblocks=self.hparams.tcn_nblocks,
                tcn_dilation_growth=self.hparams.tcn_dilation_growth,
                tcn_channel_width=self.hparams.tcn_channel_width,
                tcn_kernel_size=self.hparams.tcn_kernel_size,
                num_tcns=2,
                sample_rate=self.hparams.sample_rate,
            )
        else:
            raise ValueError(f"Invalid processor_model: {self.hparams.processor_model}")

        if self.hparams.encoder_ckpt is not None:
            # load encoder weights from a pre-trained system
            system = System.load_from_checkpoint(self.hparams.encoder_ckpt)
            self.encoder = system.encoder
            self.hparams.encoder_embed_dim = system.encoder.embed_dim
        else:
            self.encoder = SpectralEncoder(
                self.processor.num_control_params,
                self.hparams.sample_rate,
                encoder_model=self.hparams.encoder_model,
                embed_dim=self.hparams.encoder_embed_dim,
                width_mult=self.hparams.encoder_width_mult,
            )

        if self.hparams.encoder_freeze:
            for param in self.encoder.parameters():
                param.requires_grad = False

        self.controller = StyleTransferController(
            self.processor.num_control_params,
            self.hparams.encoder_embed_dim,
        )

        if len(self.hparams.recon_losses) != len(self.hparams.recon_loss_weights):
            raise ValueError("Must supply same number of weights as losses.")

        self.recon_losses = torch.nn.ModuleDict()
        for recon_loss in self.hparams.recon_losses:
            if recon_loss == "mrstft":
                self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss(
                    fft_sizes=[32, 128, 512, 2048, 8192, 32768],
                    hop_sizes=[16, 64, 256, 1024, 4096, 16384],
                    win_lengths=[32, 128, 512, 2048, 8192, 32768],
                    w_sc=0.0,
                    w_phs=0.0,
                    w_lin_mag=1.0,
                    w_log_mag=1.0,
                )
            elif recon_loss == "mrstft-md":
                self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss(
                    fft_sizes=[128, 512, 2048, 8192],
                    hop_sizes=[32, 128, 512, 2048],  #  1 / 4
                    win_lengths=[128, 512, 2048, 8192],
                    w_sc=0.0,
                    w_phs=0.0,
                    w_lin_mag=1.0,
                    w_log_mag=1.0,
                )
            elif recon_loss == "mrstft-sm":
                self.recon_losses[recon_loss] = auraloss.freq.MultiResolutionSTFTLoss(
                    fft_sizes=[512, 2048, 8192],
                    hop_sizes=[256, 1024, 4096],  #  1 / 4
                    win_lengths=[512, 2048, 8192],
                    w_sc=0.0,
                    w_phs=0.0,
                    w_lin_mag=1.0,
                    w_log_mag=1.0,
                )
            elif recon_loss == "melfft":
                self.recon_losses[recon_loss] = auraloss.freq.MelSTFTLoss(
                    self.hparams.sample_rate,
                    fft_size=self.hparams.train_length,
                    hop_size=self.hparams.train_length // 2,
                    win_length=self.hparams.train_length,
                    n_mels=128,
                    w_sc=0.0,
                    device="cuda" if self.hparams.gpus > 0 else "cpu",
                )
            elif recon_loss == "melstft":
                self.recon_losses[recon_loss] = auraloss.freq.MelSTFTLoss(
                    self.hparams.sample_rate,
                    device="cuda" if self.hparams.gpus > 0 else "cpu",
                )
            elif recon_loss == "l1":
                self.recon_losses[recon_loss] = torch.nn.L1Loss()
            elif recon_loss == "sisdr":
                self.recon_losses[recon_loss] = auraloss.time.SISDRLoss()
            else:
                raise ValueError(
                    f"Invalid reconstruction loss: {self.hparams.recon_losses}"
                )

    def forward(
        self,
        x: torch.Tensor,
        y: torch.Tensor = None,
        e_y: torch.Tensor = None,
        z: torch.Tensor = None,
        dsp_mode: DSPMode = DSPMode.NONE,
        analysis_length: int = 0,
        sample_rate: int = 24000,
    ):
        """Forward pass through the system subnetworks.

        Args:
            x (tensor): Input audio tensor with shape (batch x 1 x samples)
            y (tensor): Target audio tensor with shape (batch x 1 x samples)
            e_y (tensor): Target embedding with shape (batch x edim)
            z (tensor): Bottleneck latent.
            dsp_mode (DSPMode): Mode of operation for the DSP blocks.
            analysis_length (optional, int): Only analyze the first N samples.
            sample_rate (optional, int): Desired sampling rate for the DSP blocks.

        You must supply target audio `y`, `z`, or an embedding for the target `e_y`.

        Returns:
            y_hat (tensor): Output audio.
            p (tensor):
            e (tensor):

        """
        bs, chs, samp = x.size()

        if sample_rate != self.hparams.sample_rate:
            x_enc = torchaudio.transforms.Resample(
                sample_rate, self.hparams.sample_rate
            ).to(x.device)(x)
            if y is not None:
                y_enc = torchaudio.transforms.Resample(
                    sample_rate, self.hparams.sample_rate
                ).to(x.device)(y)
        else:
            x_enc = x
            y_enc = y

        if analysis_length > 0:
            x_enc = x_enc[..., :analysis_length]
            if y is not None:
                y_enc = y_enc[..., :analysis_length]

        e_x = self.encoder(x_enc)  # generate latent embedding for input

        if y is not None:
            e_y = self.encoder(y_enc)  # generate latent embedding for target
        elif e_y is None:
            raise RuntimeError("Must supply y, z, or e_y. None supplied.")

        # learnable comparision
        p = self.controller(e_x, e_y, z=z)

        # process audio conditioned on parameters
        # if there are multiple channels process them using same parameters
        y_hat = torch.zeros(x.shape).type_as(x)
        for ch_idx in range(chs):
            y_hat_ch = self.processor(
                x[:, ch_idx : ch_idx + 1, :],
                p,
                epsilon=self.eps_scheduler.epsilon,
                dsp_mode=dsp_mode,
                sample_rate=sample_rate,
            )
            y_hat[:, ch_idx : ch_idx + 1, :] = y_hat_ch

        return y_hat, p, e_x

    def common_paired_step(
        self,
        batch: Tuple,
        batch_idx: int,
        optimizer_idx: int = 0,
        train: bool = False,
    ):
        """Model step used for validation and training.

        Args:
            batch (Tuple[Tensor, Tensor]): Batch items containing input audio (x) and target audio (y).
            batch_idx (int): Index of the batch within the current epoch.
            optimizer_idx (int): Index of the optimizer, this step is called once for each optimizer.
                The firs optimizer corresponds to the generator and the second optimizer,
                corresponds to the adversarial loss (when in use).
            train (bool): Whether step is called during training (True) or validation (False).
        """
        x, y = batch
        loss = 0
        dsp_mode = self.hparams.dsp_mode

        if train and dsp_mode.INFER.name == DSPMode.INFER.name:
            dsp_mode = DSPMode.NONE

        # proces input audio through model
        if self.hparams.style_transfer:
            length = x.shape[-1]

            x_A = x[..., : length // 2]
            x_B = x[..., length // 2 :]

            y_A = y[..., : length // 2]
            y_B = y[..., length // 2 :]

            if torch.rand(1).sum() > 0.5:
                y_ref = y_B
                y = y_A
                x = x_A
            else:
                y_ref = y_A
                y = y_B
                x = x_B

            y_hat, p, e = self(x, y=y_ref, dsp_mode=dsp_mode)
        else:
            y_ref = None
            y_hat, p, e = self(x, dsp_mode=dsp_mode)

        # compute reconstruction loss terms
        for loss_idx, (loss_name, recon_loss_fn) in enumerate(
            self.recon_losses.items()
        ):
            temp_loss = recon_loss_fn(y_hat, y)  # reconstruction loss
            loss += float(self.hparams.recon_loss_weights[loss_idx]) * temp_loss

            self.log(
                ("train" if train else "val") + f"_loss/{loss_name}",
                temp_loss,
                on_step=True,
                on_epoch=True,
                prog_bar=False,
                logger=True,
                sync_dist=True,
            )

        # log the overall aggregate loss
        self.log(
            ("train" if train else "val") + "_loss/loss",
            loss,
            on_step=True,
            on_epoch=True,
            prog_bar=False,
            logger=True,
            sync_dist=True,
        )

        # store audio data
        data_dict = {
            "x": x.cpu(),
            "y": y.cpu(),
            "p": p.cpu(),
            "e": e.cpu(),
            "y_hat": y_hat.cpu(),
        }

        if y_ref is not None:
            data_dict["y_ref"] = y_ref.cpu()

        return loss, data_dict

    def training_step(self, batch, batch_idx, optimizer_idx=0):
        loss, _ = self.common_paired_step(
            batch,
            batch_idx,
            optimizer_idx,
            train=True,
        )

        return loss

    def training_epoch_end(self, training_step_outputs):
        if self.hparams.spsa_schedule and self.hparams.processor_model == "spsa":
            self.eps_scheduler.step(
                self.trainer.callback_metrics[self.hparams.train_monitor],
            )

    def validation_step(self, batch, batch_idx):
        loss, data_dict = self.common_paired_step(batch, batch_idx)

        return data_dict

    def optimizer_step(
        self,
        epoch,
        batch_idx,
        optimizer,
        optimizer_idx,
        optimizer_closure,
        on_tpu=False,
        using_native_amp=False,
        using_lbfgs=False,
    ):
        if optimizer_idx == 0:
            optimizer.step(closure=optimizer_closure)

    def configure_optimizers(self):
        # we need additional optimizer for the discriminator
        optimizers = []
        g_optimizer = torch.optim.Adam(
            chain(
                self.encoder.parameters(),
                self.processor.parameters(),
                self.controller.parameters(),
            ),
            lr=self.hparams.lr,
            betas=(0.9, 0.999),
        )
        optimizers.append(g_optimizer)

        g_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            g_optimizer,
            patience=self.hparams.lr_patience,
            verbose=True,
        )
        ms1 = int(self.hparams.max_epochs * 0.8)
        ms2 = int(self.hparams.max_epochs * 0.95)
        print(
            "Learning rate schedule:",
            f"0 {self.hparams.lr:0.2e} -> ",
            f"{ms1} {self.hparams.lr*0.1:0.2e} -> ",
            f"{ms2} {self.hparams.lr*0.01:0.2e}",
        )
        g_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            g_optimizer,
            milestones=[ms1, ms2],
            gamma=0.1,
        )

        lr_schedulers = {
            "scheduler": g_scheduler,
        }

        return optimizers, lr_schedulers

    def train_dataloader(self):

        train_dataset = AudioDataset(
            self.hparams.audio_dir,
            subset="train",
            train_frac=self.hparams.train_frac,
            half=self.hparams.half,
            length=self.hparams.train_length,
            input_dirs=self.hparams.input_dirs,
            random_scale_input=self.hparams.random_scale_input,
            random_scale_target=self.hparams.random_scale_target,
            buffer_size_gb=self.hparams.buffer_size_gb,
            buffer_reload_rate=self.hparams.buffer_reload_rate,
            num_examples_per_epoch=self.hparams.train_examples_per_epoch,
            augmentations={
                "pitch": {"sr": self.hparams.sample_rate},
                "tempo": {"sr": self.hparams.sample_rate},
            },
            freq_corrupt=self.hparams.freq_corrupt,
            drc_corrupt=self.hparams.drc_corrupt,
            ext=self.hparams.ext,
        )

        g = torch.Generator()
        g.manual_seed(0)

        return torch.utils.data.DataLoader(
            train_dataset,
            num_workers=self.hparams.num_workers,
            batch_size=self.hparams.batch_size,
            worker_init_fn=utils.seed_worker,
            generator=g,
            pin_memory=True,
            persistent_workers=True,
            timeout=60,
        )

    def val_dataloader(self):

        val_dataset = AudioDataset(
            self.hparams.audio_dir,
            subset="val",
            half=self.hparams.half,
            train_frac=self.hparams.train_frac,
            length=self.hparams.val_length,
            input_dirs=self.hparams.input_dirs,
            buffer_size_gb=self.hparams.buffer_size_gb,
            buffer_reload_rate=self.hparams.buffer_reload_rate,
            random_scale_input=self.hparams.random_scale_input,
            random_scale_target=self.hparams.random_scale_target,
            num_examples_per_epoch=self.hparams.val_examples_per_epoch,
            augmentations={},
            freq_corrupt=self.hparams.freq_corrupt,
            drc_corrupt=self.hparams.drc_corrupt,
            ext=self.hparams.ext,
        )

        self.val_dataset = val_dataset

        g = torch.Generator()
        g.manual_seed(0)

        return torch.utils.data.DataLoader(
            val_dataset,
            num_workers=1,
            batch_size=self.hparams.batch_size,
            worker_init_fn=utils.seed_worker,
            generator=g,
            pin_memory=True,
            persistent_workers=True,
            timeout=60,
        )
    def shutdown(self):
        del self.processor

    # add any model hyperparameters here
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        # --- Training  ---
        parser.add_argument("--batch_size", type=int, default=32)
        parser.add_argument("--lr", type=float, default=3e-4)
        parser.add_argument("--lr_patience", type=int, default=20)
        parser.add_argument("--recon_losses", nargs="+", default=["l1"])
        parser.add_argument("--recon_loss_weights", nargs="+", default=[1.0])
        # --- Controller  ---
        parser.add_argument(
            "--processor_model",
            type=str,
            help="autodiff, spsa, tcn1, tcn2, proxy0, proxy1, proxy2",
        )
        parser.add_argument("--controller_hidden_dim", type=int, default=256)
        parser.add_argument("--style_transfer", action="store_true")
        # --- Encoder ---
        parser.add_argument("--encoder_model", type=str, default="mobilenet_v2")
        parser.add_argument("--encoder_embed_dim", type=int, default=128)
        parser.add_argument("--encoder_width_mult", type=int, default=2)
        parser.add_argument("--encoder_ckpt", type=str, default=None)
        parser.add_argument("--encoder_freeze", action="store_true", default=False)
        # --- TCN  ---
        parser.add_argument("--tcn_causal", action="store_true")
        parser.add_argument("--tcn_nblocks", type=int, default=4)
        parser.add_argument("--tcn_dilation_growth", type=int, default=8)
        parser.add_argument("--tcn_channel_width", type=int, default=32)
        parser.add_argument("--tcn_kernel_size", type=int, default=13)
        # ---  SPSA  ---
        parser.add_argument("--plugin_config_file", type=str, default=None)
        parser.add_argument("--spsa_epsilon", type=float, default=0.001)
        parser.add_argument("--spsa_schedule", action="store_true")
        parser.add_argument("--spsa_patience", type=int, default=10)
        parser.add_argument("--spsa_verbose", action="store_true")
        parser.add_argument("--spsa_factor", type=float, default=0.5)
        parser.add_argument("--spsa_parallel", action="store_true")
        # --- Proxy ----
        parser.add_argument("--proxy_ckpts", nargs="+")
        parser.add_argument("--freeze_proxies", action="store_true", default=False)
        parser.add_argument("--use_dsp", action="store_true", default=False)
        parser.add_argument("--dsp_mode", choices=DSPMode, type=DSPMode)
        # --- Dataset  ---
        parser.add_argument("--audio_dir", type=str)
        parser.add_argument("--ext", type=str, default="wav")
        parser.add_argument("--input_dirs", nargs="+")
        parser.add_argument("--buffer_reload_rate", type=int, default=1000)
        parser.add_argument("--buffer_size_gb", type=float, default=1.0)
        parser.add_argument("--sample_rate", type=int, default=24000)
        parser.add_argument("--dsp_sample_rate", type=int, default=24000)
        parser.add_argument("--shuffle", type=bool, default=True)
        parser.add_argument("--random_scale_input", action="store_true")
        parser.add_argument("--random_scale_target", action="store_true")
        parser.add_argument("--freq_corrupt", action="store_true")
        parser.add_argument("--drc_corrupt", action="store_true")
        parser.add_argument("--train_length", type=int, default=65536)
        parser.add_argument("--train_frac", type=float, default=0.8)
        parser.add_argument("--half", action="store_true")
        parser.add_argument("--train_examples_per_epoch", type=int, default=10000)
        parser.add_argument("--val_length", type=int, default=131072)
        parser.add_argument("--val_examples_per_epoch", type=int, default=1000)
        parser.add_argument("--num_workers", type=int, default=16)

        return parser