Spaces:
Runtime error
Runtime error
mhamilton723
commited on
Commit
•
804efd3
1
Parent(s):
20d1a10
test app
Browse files- app.py +39 -64
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,71 +1,46 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import torch
|
3 |
-
# import torchvision.transforms as T
|
4 |
-
# from PIL import Image
|
5 |
-
#
|
6 |
-
# # Assuming the necessary packages (featup, clip, etc.) are installed and accessible
|
7 |
-
# from featup.util import norm, unnorm
|
8 |
-
# from featup.plotting import plot_feats
|
9 |
-
#
|
10 |
-
# # Setup - ensure the repository content is accessible in the environment
|
11 |
-
#
|
12 |
-
# # Streamlit UI
|
13 |
-
# st.title("Feature Upsampling Demo")
|
14 |
-
#
|
15 |
-
# # File uploader
|
16 |
-
# uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
17 |
-
# if uploaded_file is not None:
|
18 |
-
# image = Image.open(uploaded_file).convert("RGB")
|
19 |
-
#
|
20 |
-
# # Image preprocessing
|
21 |
-
# input_size = 224
|
22 |
-
# transform = T.Compose([
|
23 |
-
# T.Resize(input_size),
|
24 |
-
# T.CenterCrop((input_size, input_size)),
|
25 |
-
# T.ToTensor(),
|
26 |
-
# norm
|
27 |
-
# ])
|
28 |
-
#
|
29 |
-
# image_tensor = transform(image).unsqueeze(0) # Assuming CUDA is available, .cuda()
|
30 |
-
#
|
31 |
-
# # Model selection
|
32 |
-
# model_option = st.selectbox(
|
33 |
-
# 'Choose a model for feature upsampling',
|
34 |
-
# ('dino16', 'dinov2', 'clip', 'resnet50')
|
35 |
-
# )
|
36 |
-
#
|
37 |
-
# if st.button('Upsample Features'):
|
38 |
-
# # Load the selected model
|
39 |
-
# upsampler = torch.hub.load("mhamilton723/FeatUp", model_option).cuda()
|
40 |
-
# hr_feats = upsampler(image_tensor)
|
41 |
-
# lr_feats = upsampler.model(image_tensor)
|
42 |
-
#
|
43 |
-
# # Plotting - adjust the plot_feats function or find an alternative to display images in Streamlit
|
44 |
-
# # This step will likely need customization to display within Streamlit's interface
|
45 |
-
# plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
|
46 |
-
|
47 |
-
|
48 |
import streamlit as st
|
49 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
# Check if CUDA (GPU support) is available in PyTorch
|
53 |
-
cuda_available = torch.cuda.is_available()
|
54 |
-
gpu_count = torch.cuda.device_count()
|
55 |
-
gpu_name = torch.cuda.get_device_name(0) if cuda_available else "Not Available"
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
-
#
|
63 |
-
|
|
|
64 |
|
65 |
-
# Displaying the results
|
66 |
-
if cuda_available:
|
67 |
-
st.success(f"GPU is available! 🎉")
|
68 |
-
st.info(f"Number of GPUs available: {gpu_count}")
|
69 |
-
st.info(f"GPU Name: {gpu_name}")
|
70 |
-
else:
|
71 |
-
st.error("GPU is not available. 😢")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Assuming the necessary packages (featup, clip, etc.) are installed and accessible
|
7 |
+
from featup.util import norm, unnorm
|
8 |
+
from featup.plotting import plot_feats
|
9 |
+
|
10 |
+
# Setup - ensure the repository content is accessible in the environment
|
11 |
+
|
12 |
+
# Streamlit UI
|
13 |
+
st.title("Feature Upsampling Demo")
|
14 |
+
|
15 |
+
# File uploader
|
16 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
17 |
+
if uploaded_file is not None:
|
18 |
+
image = Image.open(uploaded_file).convert("RGB")
|
19 |
+
|
20 |
+
# Image preprocessing
|
21 |
+
input_size = 224
|
22 |
+
transform = T.Compose([
|
23 |
+
T.Resize(input_size),
|
24 |
+
T.CenterCrop((input_size, input_size)),
|
25 |
+
T.ToTensor(),
|
26 |
+
norm
|
27 |
+
])
|
28 |
|
29 |
+
image_tensor = transform(image).unsqueeze(0) # Assuming CUDA is available, .cuda()
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Model selection
|
32 |
+
model_option = st.selectbox(
|
33 |
+
'Choose a model for feature upsampling',
|
34 |
+
('dino16', 'dinov2', 'clip', 'resnet50')
|
35 |
+
)
|
36 |
|
37 |
+
if st.button('Upsample Features'):
|
38 |
+
# Load the selected model
|
39 |
+
upsampler = torch.hub.load("mhamilton723/FeatUp", model_option).cuda()
|
40 |
+
hr_feats = upsampler(image_tensor)
|
41 |
+
lr_feats = upsampler.model(image_tensor)
|
42 |
|
43 |
+
# Plotting - adjust the plot_feats function or find an alternative to display images in Streamlit
|
44 |
+
# This step will likely need customization to display within Streamlit's interface
|
45 |
+
plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
git+https://github.com/mhamilton723/FeatUp
|