mhamilton723 commited on
Commit
20d1a10
1 Parent(s): aac52ac
Files changed (2) hide show
  1. app.py +64 -38
  2. requirements.txt +0 -1
app.py CHANGED
@@ -1,45 +1,71 @@
1
- import streamlit as st
2
- import torch
3
- import torchvision.transforms as T
4
- from PIL import Image
5
-
6
- # Assuming the necessary packages (featup, clip, etc.) are installed and accessible
7
- from featup.util import norm, unnorm
8
- from featup.plotting import plot_feats
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- # Setup - ensure the repository content is accessible in the environment
11
 
12
- # Streamlit UI
13
- st.title("Feature Upsampling Demo")
14
 
15
- # File uploader
16
- uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
17
- if uploaded_file is not None:
18
- image = Image.open(uploaded_file).convert("RGB")
 
19
 
20
- # Image preprocessing
21
- input_size = 224
22
- transform = T.Compose([
23
- T.Resize(input_size),
24
- T.CenterCrop((input_size, input_size)),
25
- T.ToTensor(),
26
- norm
27
- ])
28
 
29
- image_tensor = transform(image).unsqueeze(0) # Assuming CUDA is available, .cuda()
30
-
31
- # Model selection
32
- model_option = st.selectbox(
33
- 'Choose a model for feature upsampling',
34
- ('dino16', 'dinov2', 'clip', 'resnet50')
35
- )
36
 
37
- if st.button('Upsample Features'):
38
- # Load the selected model
39
- upsampler = torch.hub.load("mhamilton723/FeatUp", model_option).cuda()
40
- hr_feats = upsampler(image_tensor)
41
- lr_feats = upsampler.model(image_tensor)
42
 
43
- # Plotting - adjust the plot_feats function or find an alternative to display images in Streamlit
44
- # This step will likely need customization to display within Streamlit's interface
45
- plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
 
 
 
 
 
1
+ # import streamlit as st
2
+ # import torch
3
+ # import torchvision.transforms as T
4
+ # from PIL import Image
5
+ #
6
+ # # Assuming the necessary packages (featup, clip, etc.) are installed and accessible
7
+ # from featup.util import norm, unnorm
8
+ # from featup.plotting import plot_feats
9
+ #
10
+ # # Setup - ensure the repository content is accessible in the environment
11
+ #
12
+ # # Streamlit UI
13
+ # st.title("Feature Upsampling Demo")
14
+ #
15
+ # # File uploader
16
+ # uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
17
+ # if uploaded_file is not None:
18
+ # image = Image.open(uploaded_file).convert("RGB")
19
+ #
20
+ # # Image preprocessing
21
+ # input_size = 224
22
+ # transform = T.Compose([
23
+ # T.Resize(input_size),
24
+ # T.CenterCrop((input_size, input_size)),
25
+ # T.ToTensor(),
26
+ # norm
27
+ # ])
28
+ #
29
+ # image_tensor = transform(image).unsqueeze(0) # Assuming CUDA is available, .cuda()
30
+ #
31
+ # # Model selection
32
+ # model_option = st.selectbox(
33
+ # 'Choose a model for feature upsampling',
34
+ # ('dino16', 'dinov2', 'clip', 'resnet50')
35
+ # )
36
+ #
37
+ # if st.button('Upsample Features'):
38
+ # # Load the selected model
39
+ # upsampler = torch.hub.load("mhamilton723/FeatUp", model_option).cuda()
40
+ # hr_feats = upsampler(image_tensor)
41
+ # lr_feats = upsampler.model(image_tensor)
42
+ #
43
+ # # Plotting - adjust the plot_feats function or find an alternative to display images in Streamlit
44
+ # # This step will likely need customization to display within Streamlit's interface
45
+ # plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])
46
 
 
47
 
48
+ import streamlit as st
49
+ import torch
50
 
51
+ def check_gpu_status():
52
+ # Check if CUDA (GPU support) is available in PyTorch
53
+ cuda_available = torch.cuda.is_available()
54
+ gpu_count = torch.cuda.device_count()
55
+ gpu_name = torch.cuda.get_device_name(0) if cuda_available else "Not Available"
56
 
57
+ return cuda_available, gpu_count, gpu_name
 
 
 
 
 
 
 
58
 
59
+ # Streamlit page configuration
60
+ st.title("PyTorch GPU Availability Test")
 
 
 
 
 
61
 
62
+ # Checking the GPU status
63
+ cuda_available, gpu_count, gpu_name = check_gpu_status()
 
 
 
64
 
65
+ # Displaying the results
66
+ if cuda_available:
67
+ st.success(f"GPU is available! 🎉")
68
+ st.info(f"Number of GPUs available: {gpu_count}")
69
+ st.info(f"GPU Name: {gpu_name}")
70
+ else:
71
+ st.error("GPU is not available. 😢")
requirements.txt CHANGED
@@ -1 +0,0 @@
1
- git+https://github.com/mhamilton723/FeatUp