File size: 4,604 Bytes
5aa316f
20d1a10
804efd3
 
5aa316f
 
 
 
4dad5d2
 
523ffdf
804efd3
5aa316f
 
 
eaaab0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aa316f
 
 
 
804efd3
 
eaaab0d
804efd3
eaaab0d
 
 
 
 
 
 
 
 
 
 
 
4dad5d2
eaaab0d
 
 
 
 
 
 
 
 
 
 
 
 
534fa09
5aa316f
e6c364b
523ffdf
eaaab0d
 
 
 
 
 
 
 
5aa316f
 
eaaab0d
 
5aa316f
 
 
 
 
 
 
 
 
 
 
534fa09
804efd3
5aa316f
804efd3
 
5aa316f
 
 
 
 
 
 
 
 
eaaab0d
 
4dad5d2
 
 
eaaab0d
534fa09
eaaab0d
534fa09
eaaab0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
from PIL import Image
import gradio as gr
from featup.util import norm, unnorm, pca, remove_axes
from pytorch_lightning import seed_everything
import os
import requests
import os
import csv

def plot_feats(image, lr, hr):
    assert len(image.shape) == len(lr.shape) == len(hr.shape) == 3
    seed_everything(0)
    [lr_feats_pca, hr_feats_pca], _ = pca([lr.unsqueeze(0), hr.unsqueeze(0)], dim=9)
    fig, ax = plt.subplots(3, 3, figsize=(15, 15))
    ax[0, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[1, 0].imshow(image.permute(1, 2, 0).detach().cpu())
    ax[2, 0].imshow(image.permute(1, 2, 0).detach().cpu())

    ax[0, 0].set_title("Image", fontsize=22)
    ax[0, 1].set_title("Original", fontsize=22)
    ax[0, 2].set_title("Upsampled Features", fontsize=22)

    ax[0, 1].imshow(lr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())
    ax[0, 0].set_ylabel("PCA Components 1-3", fontsize=22)
    ax[0, 2].imshow(hr_feats_pca[0, :3].permute(1, 2, 0).detach().cpu())

    ax[1, 1].imshow(lr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())
    ax[1, 0].set_ylabel("PCA Components 4-6", fontsize=22)
    ax[1, 2].imshow(hr_feats_pca[0, 3:6].permute(1, 2, 0).detach().cpu())

    ax[2, 1].imshow(lr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())
    ax[2, 0].set_ylabel("PCA Components 7-9", fontsize=22)
    ax[2, 2].imshow(hr_feats_pca[0, 6:9].permute(1, 2, 0).detach().cpu())

    remove_axes(ax)
    plt.tight_layout()
    plt.close(fig)  # Close plt to avoid additional empty plots
    return fig


if __name__ == "__main__":

    def download_image(url, save_path):
        response = requests.get(url)
        with open(save_path, 'wb') as file:
            file.write(response.content)

    base_url = "https://marhamilresearch4.blob.core.windows.net/feature-upsampling-public/sample_images/"
    sample_images_urls = {
        "skate.jpg": base_url + "skate.jpg",
        "car.jpg": base_url + "car.jpg",
        "plant.png": base_url + "plant.png",
    }

    sample_images_dir = "/tmp/sample_images"

    # Ensure the directory for sample images exists
    os.makedirs(sample_images_dir, exist_ok=True)

    # Download each sample image
    for filename, url in sample_images_urls.items():
        save_path = os.path.join(sample_images_dir, filename)
        # Download the image if it doesn't already exist
        if not os.path.exists(save_path):
            print(f"Downloading {filename}...")
            download_image(url, save_path)
        else:
            print(f"{filename} already exists. Skipping download.")

    os.environ['TORCH_HOME'] = '/tmp/.cache'
    os.environ['GRADIO_EXAMPLES_CACHE'] = '/tmp/gradio_cache'
    csv.field_size_limit(100000000)
    options = ['dino16', 'vit', 'dinov2', 'clip', 'resnet50']

    image_input = gr.Image(label="Choose an image to featurize",
                           height=480,
                           type="pil",
                           image_mode='RGB',
                           sources=['upload', 'webcam', 'clipboard']
                           )
    model_option = gr.Radio(options, value="dino16", label='Choose a backbone to upsample')

    models = {o: torch.hub.load("mhamilton723/FeatUp", o) for o in options}


    def upsample_features(image, model_option):
        # Image preprocessing
        input_size = 224
        transform = T.Compose([
            T.Resize(input_size),
            T.CenterCrop((input_size, input_size)),
            T.ToTensor(),
            norm
        ])
        image_tensor = transform(image).unsqueeze(0).cuda()

        # Load the selected model
        upsampler = models[model_option].cuda()
        hr_feats = upsampler(image_tensor)
        lr_feats = upsampler.model(image_tensor)
        upsampler.cpu()

        return plot_feats(unnorm(image_tensor)[0], lr_feats[0], hr_feats[0])


    demo = gr.Interface(fn=upsample_features,
                        inputs=[image_input, model_option],
                        outputs="plot",
                        title="Feature Upsampling Demo",
                        description="This demo allows you to upsample features of an image using selected models.",
                        examples=[
                            ["/tmp/sample_images/skate.jpg", "dino16"],
                            ["/tmp/sample_images/car.jpg", "dinov2"],
                            ["/tmp/sample_images/plant.png", "dino16"],
                        ]

                        )

    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)