metehanayhan's picture
Upload 3 files
107bbc1 verified
# METEHAN AYHAN
import streamlit as st
from PIL import Image
import numpy as np
import tensorflow as tf
model = tf.keras.models.load_model('model.h5')
classes = { 0:'Speed limit (20km/h)',
1:'Speed limit (30km/h)',
2:'Speed limit (50km/h)',
3:'Speed limit (60km/h)',
4:'Speed limit (70km/h)',
5:'Speed limit (80km/h)',
6:'End of speed limit (80km/h)',
7:'Speed limit (100km/h)',
8:'Speed limit (120km/h)',
9:'No passing',
10:'No passing veh over 3.5 tons',
11:'Right-of-way at intersection',
12:'Priority road',
13:'Yield',
14:'Stop',
15:'No vehicles',
16:'Veh > 3.5 tons prohibited',
17:'No entry',
18:'General caution',
19:'Dangerous curve left',
20:'Dangerous curve right',
21:'Double curve',
22:'Bumpy road',
23:'Slippery road',
24:'Road narrows on the right',
25:'Road work',
26:'Traffic signals',
27:'Pedestrians',
28:'Children crossing',
29:'Bicycles crossing',
30:'Beware of ice/snow',
31:'Wild animals crossing',
32:'End speed + passing limits',
33:'Turn right ahead',
34:'Turn left ahead',
35:'Ahead only',
36:'Go straight or right',
37:'Go straight or left',
38:'Keep right',
39:'Keep left',
40:'Roundabout mandatory',
41:'End of no passing',
42:'End no passing veh > 3.5 tons' }
st.title('German Traffic Sign Recognition - Metehan Ayhan')
st.write("Upload an image of a traffic sign to predict its class.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Traffic Sign.', use_column_width=True)
st.write("")
st.write("Classifying...")
image = image.resize((32, 32))
image = np.array(image)
image = np.expand_dims(image, axis=0) # Modelin beklediği şekil
predictions = model.predict(image)
predicted_class = np.argmax(predictions[0])
st.write(f"Prediction: {classes[predicted_class]}")