metehanayhan commited on
Commit
107bbc1
·
verified ·
1 Parent(s): bcb443a

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +75 -0
  2. model.h5 +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # METEHAN AYHAN
2
+
3
+ import streamlit as st
4
+ from PIL import Image
5
+ import numpy as np
6
+ import tensorflow as tf
7
+
8
+ model = tf.keras.models.load_model('model.h5')
9
+
10
+
11
+ classes = { 0:'Speed limit (20km/h)',
12
+ 1:'Speed limit (30km/h)',
13
+ 2:'Speed limit (50km/h)',
14
+ 3:'Speed limit (60km/h)',
15
+ 4:'Speed limit (70km/h)',
16
+ 5:'Speed limit (80km/h)',
17
+ 6:'End of speed limit (80km/h)',
18
+ 7:'Speed limit (100km/h)',
19
+ 8:'Speed limit (120km/h)',
20
+ 9:'No passing',
21
+ 10:'No passing veh over 3.5 tons',
22
+ 11:'Right-of-way at intersection',
23
+ 12:'Priority road',
24
+ 13:'Yield',
25
+ 14:'Stop',
26
+ 15:'No vehicles',
27
+ 16:'Veh > 3.5 tons prohibited',
28
+ 17:'No entry',
29
+ 18:'General caution',
30
+ 19:'Dangerous curve left',
31
+ 20:'Dangerous curve right',
32
+ 21:'Double curve',
33
+ 22:'Bumpy road',
34
+ 23:'Slippery road',
35
+ 24:'Road narrows on the right',
36
+ 25:'Road work',
37
+ 26:'Traffic signals',
38
+ 27:'Pedestrians',
39
+ 28:'Children crossing',
40
+ 29:'Bicycles crossing',
41
+ 30:'Beware of ice/snow',
42
+ 31:'Wild animals crossing',
43
+ 32:'End speed + passing limits',
44
+ 33:'Turn right ahead',
45
+ 34:'Turn left ahead',
46
+ 35:'Ahead only',
47
+ 36:'Go straight or right',
48
+ 37:'Go straight or left',
49
+ 38:'Keep right',
50
+ 39:'Keep left',
51
+ 40:'Roundabout mandatory',
52
+ 41:'End of no passing',
53
+ 42:'End no passing veh > 3.5 tons' }
54
+
55
+ st.title('German Traffic Sign Recognition - Metehan Ayhan')
56
+ st.write("Upload an image of a traffic sign to predict its class.")
57
+
58
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
59
+
60
+ if uploaded_file is not None:
61
+ image = Image.open(uploaded_file)
62
+ st.image(image, caption='Uploaded Traffic Sign.', use_column_width=True)
63
+ st.write("")
64
+ st.write("Classifying...")
65
+
66
+ image = image.resize((32, 32))
67
+ image = np.array(image)
68
+ image = np.expand_dims(image, axis=0) # Modelin beklediği şekil
69
+
70
+
71
+ predictions = model.predict(image)
72
+ predicted_class = np.argmax(predictions[0])
73
+
74
+
75
+ st.write(f"Prediction: {classes[predicted_class]}")
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3abf6b949293ff203ce8a80bce4c693258c88f01dbfc7ed08fd9c346a4d38a01
3
+ size 2405320
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ Pillow
3
+ tensorflow
4
+ numpy