Spaces:
Running
Running
Test new design template.
#1
by
metacritical
- opened
- index.html +106 -175
index.html
CHANGED
@@ -1,188 +1,119 @@
|
|
1 |
<!DOCTYPE html>
|
2 |
-
<html>
|
3 |
<head>
|
4 |
-
<meta charset="
|
5 |
-
<meta name="
|
6 |
-
<
|
7 |
-
<
|
8 |
-
<
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
</head>
|
25 |
<body>
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
<
|
31 |
-
|
32 |
-
|
33 |
-
<div class="is-size-5 publication-authors">
|
34 |
-
A collection of groundbreaking research papers in AI and language models
|
35 |
-
</div>
|
36 |
-
</div>
|
37 |
-
</div>
|
38 |
</div>
|
39 |
-
|
40 |
-
</
|
41 |
-
|
42 |
-
<
|
43 |
-
|
44 |
-
<!-- Abstract. -->
|
45 |
-
<div class="columns is-centered has-text-centered">
|
46 |
-
<div class="column is-four-fifths">
|
47 |
-
<h2 class="title is-3">Overview</h2>
|
48 |
-
<div class="content has-text-justified">
|
49 |
-
<p>
|
50 |
-
DeepSeek has released a series of significant papers detailing advancements in large language models (LLMs).
|
51 |
-
Each paper represents a step forward in making AI more capable, efficient, and accessible.
|
52 |
-
</p>
|
53 |
-
</div>
|
54 |
-
</div>
|
55 |
</div>
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
<h2 class="title is-3">Research Papers</h2>
|
62 |
-
|
63 |
-
<!-- Paper 1 -->
|
64 |
-
<div class="publication-block">
|
65 |
-
<div class="publication-header">
|
66 |
-
<h3 class="title is-4">DeepSeekLLM: Scaling Open-Source Language Models with Longer-termism</h3>
|
67 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
68 |
-
<div class="is-size-5 publication-authors">
|
69 |
-
Released: November 29, 2023
|
70 |
-
</div>
|
71 |
-
</div>
|
72 |
-
<div class="content has-text-justified">
|
73 |
-
<p>This foundational paper explores scaling laws and the trade-offs between data and model size,
|
74 |
-
establishing the groundwork for subsequent models.</p>
|
75 |
-
</div>
|
76 |
-
</div>
|
77 |
-
|
78 |
-
<!-- Paper 2 -->
|
79 |
-
<div class="publication-block">
|
80 |
-
<div class="publication-header">
|
81 |
-
<h3 class="title is-4">DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model</h3>
|
82 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
83 |
-
<div class="is-size-5 publication-authors">
|
84 |
-
Released: May 2024
|
85 |
-
</div>
|
86 |
-
</div>
|
87 |
-
<div class="content has-text-justified">
|
88 |
-
<p>Introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing
|
89 |
-
training costs by 42%.</p>
|
90 |
-
</div>
|
91 |
-
</div>
|
92 |
-
|
93 |
-
<!-- Additional papers following same structure -->
|
94 |
-
<div class="publication-block">
|
95 |
-
<div class="publication-header">
|
96 |
-
<h3 class="title is-4">DeepSeek-V3 Technical Report</h3>
|
97 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
98 |
-
<div class="is-size-5 publication-authors">
|
99 |
-
Released: December 2024
|
100 |
-
</div>
|
101 |
-
</div>
|
102 |
-
<div class="content has-text-justified">
|
103 |
-
<p>Discusses the scaling of sparse MoE networks to 671 billion parameters.</p>
|
104 |
-
</div>
|
105 |
-
</div>
|
106 |
-
|
107 |
-
<div class="publication-block">
|
108 |
-
<div class="publication-header">
|
109 |
-
<h3 class="title is-4">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs</h3>
|
110 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
111 |
-
<div class="is-size-5 publication-authors">
|
112 |
-
Released: January 20, 2025
|
113 |
-
</div>
|
114 |
-
</div>
|
115 |
-
<div class="content has-text-justified">
|
116 |
-
<p>Enhances reasoning capabilities through large-scale reinforcement learning.</p>
|
117 |
-
</div>
|
118 |
-
</div>
|
119 |
-
|
120 |
-
<div class="publication-block">
|
121 |
-
<div class="publication-header">
|
122 |
-
<h3 class="title is-4">DeepSeekMath: Pushing the Limits of Mathematical Reasoning</h3>
|
123 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
124 |
-
<div class="is-size-5 publication-authors">
|
125 |
-
Released: April 2024
|
126 |
-
</div>
|
127 |
-
</div>
|
128 |
-
<div class="content has-text-justified">
|
129 |
-
<p>Presents methods to improve mathematical reasoning in LLMs.</p>
|
130 |
-
</div>
|
131 |
-
</div>
|
132 |
-
|
133 |
-
<div class="publication-block">
|
134 |
-
<div class="publication-header">
|
135 |
-
<h3 class="title is-4">DeepSeek-Prover: Advancing Theorem Proving in LLMs</h3>
|
136 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
137 |
-
</div>
|
138 |
-
<div class="content has-text-justified">
|
139 |
-
<p>Focuses on enhancing theorem proving capabilities using synthetic data for training.</p>
|
140 |
-
</div>
|
141 |
-
</div>
|
142 |
-
|
143 |
-
<div class="publication-block">
|
144 |
-
<div class="publication-header">
|
145 |
-
<h3 class="title is-4">DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models</h3>
|
146 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
147 |
-
</div>
|
148 |
-
<div class="content has-text-justified">
|
149 |
-
<p>Details advancements in code-related tasks with emphasis on open-source methodologies.</p>
|
150 |
-
</div>
|
151 |
-
</div>
|
152 |
-
|
153 |
-
<div class="publication-block">
|
154 |
-
<div class="publication-header">
|
155 |
-
<h3 class="title is-4">DeepSeekMoE: Advancing Mixture-of-Experts Architecture</h3>
|
156 |
-
<span class="tag is-primary is-medium">Deep Dive Coming Soon</span>
|
157 |
-
</div>
|
158 |
-
<div class="content has-text-justified">
|
159 |
-
<p>Discusses the integration and benefits of the Mixture-of-Experts approach.</p>
|
160 |
-
</div>
|
161 |
-
</div>
|
162 |
-
</div>
|
163 |
</div>
|
164 |
-
|
165 |
-
</
|
166 |
-
|
167 |
-
<
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
</
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
</div>
|
174 |
-
<div class="
|
175 |
-
<
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
</div>
|
184 |
</div>
|
185 |
-
|
186 |
-
|
|
|
187 |
</body>
|
188 |
</html>
|
|
|
1 |
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>DeepSeek Papers</title>
|
7 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
|
8 |
+
<style>
|
9 |
+
body {
|
10 |
+
font-family: 'Arial', sans-serif;
|
11 |
+
margin: 0;
|
12 |
+
padding: 0;
|
13 |
+
line-height: 1.6;
|
14 |
+
color: #333;
|
15 |
+
background-color: #f9f9f9;
|
16 |
+
}
|
17 |
+
header {
|
18 |
+
background: #4CAF50;
|
19 |
+
color: white;
|
20 |
+
padding: 20px 0;
|
21 |
+
text-align: center;
|
22 |
+
}
|
23 |
+
h1 {
|
24 |
+
margin: 0;
|
25 |
+
font-size: 2.5em;
|
26 |
+
}
|
27 |
+
.container {
|
28 |
+
max-width: 800px;
|
29 |
+
margin: 20px auto;
|
30 |
+
padding: 20px;
|
31 |
+
background: white;
|
32 |
+
border-radius: 8px;
|
33 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
34 |
+
}
|
35 |
+
.paper {
|
36 |
+
margin-bottom: 20px;
|
37 |
+
}
|
38 |
+
.paper a {
|
39 |
+
text-decoration: none;
|
40 |
+
color: #4CAF50;
|
41 |
+
font-weight: bold;
|
42 |
+
}
|
43 |
+
.paper a:hover {
|
44 |
+
text-decoration: underline;
|
45 |
+
}
|
46 |
+
.coming-soon {
|
47 |
+
color: #e74c3c;
|
48 |
+
font-size: 0.9em;
|
49 |
+
margin-left: 10px;
|
50 |
+
}
|
51 |
+
footer {
|
52 |
+
text-align: center;
|
53 |
+
padding: 10px 0;
|
54 |
+
background: #4CAF50;
|
55 |
+
color: white;
|
56 |
+
margin-top: 20px;
|
57 |
+
}
|
58 |
+
</style>
|
59 |
</head>
|
60 |
<body>
|
61 |
+
<header>
|
62 |
+
<h1>DeepSeek Papers</h1>
|
63 |
+
</header>
|
64 |
+
<div class="container">
|
65 |
+
<h2>DeepSeek Research Contributions</h2>
|
66 |
+
<p>Below is a list of significant papers by DeepSeek detailing advancements in large language models (LLMs). Each paper includes a brief description and highlights upcoming deep dives.</p>
|
67 |
|
68 |
+
<!-- Paper List -->
|
69 |
+
<div class="paper">
|
70 |
+
<a href="#">DeepSeekLLM: Scaling Open-Source Language Models with Longer-termism</a>
|
71 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
72 |
+
<p><strong>Release Date:</strong> November 29, 2023<br>
|
73 |
+
This foundational paper explores scaling laws and the trade-offs between data and model size, establishing the groundwork for subsequent models.</p>
|
|
|
|
|
|
|
|
|
|
|
74 |
</div>
|
75 |
+
<div class="paper">
|
76 |
+
<a href="#">DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model</a>
|
77 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
78 |
+
<p><strong>Release Date:</strong> May 2024<br>
|
79 |
+
This paper introduces a Mixture-of-Experts (MoE) architecture, enhancing performance while reducing training costs by 42%.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
</div>
|
81 |
+
<div class="paper">
|
82 |
+
<a href="#">DeepSeek-V3 Technical Report</a>
|
83 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
84 |
+
<p><strong>Release Date:</strong> December 2024<br>
|
85 |
+
This report discusses the scaling of sparse MoE networks to 671 billion parameters, utilizing mixed precision training and HPC co-design strategies.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
</div>
|
87 |
+
<div class="paper">
|
88 |
+
<a href="#">DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning</a>
|
89 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
90 |
+
<p><strong>Release Date:</strong> January 20, 2025<br>
|
91 |
+
The R1 model enhances reasoning capabilities through large-scale reinforcement learning, competing directly with leading models like OpenAI's o1.</p>
|
92 |
+
</div>
|
93 |
+
<div class="paper">
|
94 |
+
<a href="#">DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models</a>
|
95 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
96 |
+
<p><strong>Release Date:</strong> April 2024<br>
|
97 |
+
This paper presents methods to improve mathematical reasoning in LLMs, introducing the Group Relative Policy Optimization (GRPO) algorithm.</p>
|
98 |
+
</div>
|
99 |
+
<div class="paper">
|
100 |
+
<a href="#">DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data</a>
|
101 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
102 |
+
<p>Focuses on enhancing theorem proving capabilities in language models using synthetic data for training.</p>
|
103 |
</div>
|
104 |
+
<div class="paper">
|
105 |
+
<a href="#">DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence</a>
|
106 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
107 |
+
<p>This paper details advancements in code-related tasks with an emphasis on open-source methodologies, improving upon earlier coding models.</p>
|
108 |
+
</div>
|
109 |
+
<div class="paper">
|
110 |
+
<a href="#">DeepSeekMoE</a>
|
111 |
+
<span class="coming-soon">[Deep Dive Coming Soon]</span>
|
112 |
+
<p>Discusses the integration and benefits of the Mixture-of-Experts approach within the DeepSeek framework.</p>
|
113 |
</div>
|
114 |
</div>
|
115 |
+
<footer>
|
116 |
+
© 2025 DeepSeek Research. All rights reserved.
|
117 |
+
</footer>
|
118 |
</body>
|
119 |
</html>
|