# import gradio as gr | |
# import pandas as pd | |
# from css_html_js import custom_css | |
# TITLE = """<h1 align="center" id="space-title">π²πΎ Malay LLM Leaderboard</h1>""" | |
# INTRODUCTION_TEXT = """ | |
# π The π²πΎ Malay LLM Leaderboard aims to track, rank and evaluate open LLMs on Malay tasks. All notebooks at https://github.com/mesolitica/llm-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/malay-llm-leaderboard/discussions with link to the notebook. | |
# ## Dataset | |
# π We evaluate models based on 3 datasets, | |
# 1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3 | |
# - This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language. | |
# 2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com | |
# - This test is general test for malay grammar. | |
# 3. Translated IndoNLI to Malay, tested on `test_expert` dataset, https://huggingface.co/datasets/mesolitica/translated-indonli | |
# - This test is general test to language reasoning. | |
# 4. HumanEval, https://github.com/openai/human-eval | |
# - This test is for programming language understanding. | |
# """ | |
# close_source = [ | |
# { | |
# 'model': 'gpt-4-1106-preview', | |
# 'BM-PT3 0-shot': 51.85185185185185, | |
# 'BM-PT3 1-shot': 66.66666666666666, | |
# 'BM-PT3 3-shots': 55.55555555555556, | |
# 'Tatabahasa 0-shot': 75.64469914040114, | |
# 'Tatabahasa 1-shot': 73.63896848137536, | |
# 'Tatabahasa 3-shots': 75.64469914040114, | |
# }, | |
# { | |
# 'model': 'gpt-3.5-turbo-0613', | |
# 'BM-PT3 0-shot': 36.53846153846153, | |
# 'BM-PT3 1-shot': 28.846153846153843, | |
# 'BM-PT3 3-shots': 24.528301886792452, | |
# 'Tatabahasa 0-shot': 59.530791788856305, | |
# 'Tatabahasa 1-shot': 60.80691642651297, | |
# 'Tatabahasa 3-shots': 63.03724928366762, | |
# }, | |
# { | |
# 'model': 'Antrophic Claude 2', | |
# 'Tatabahasa 0-shot': 61, | |
# 'Tatabahasa 3-shots': 57.8, | |
# }, | |
# { | |
# 'model': 'Antrophic Claude 1', | |
# 'Tatabahasa 3-shots': 67, | |
# }, | |
# ] | |
# open_source = [ | |
# { | |
# 'model': '[llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)', | |
# 'Tatabahasa 0-shot': 24.355300859598856, | |
# 'Tatabahasa 1-shot': 28.08022922636103, | |
# 'Tatabahasa 3-shots': 24.641833810888254, | |
# }, | |
# { | |
# 'model': '[malaysian-llama2-7b-32k](https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf)', | |
# 'BM-PT3 0-shot': 20.37037037037037, | |
# 'BM-PT3 1-shot': 20.37037037037037, | |
# 'BM-PT3 3-shots': 29.629629629629626, | |
# 'Tatabahasa 0-shot': 17.765042979942695, | |
# 'Tatabahasa 1-shot': 24.068767908309454, | |
# 'Tatabahasa 3-shots': 27.507163323782237, | |
# }, | |
# { | |
# 'model': '[malaysian-llama2-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-7b-32k-instructions)', | |
# 'BM-PT3 0-shot': 35.294117647058826, | |
# 'BM-PT3 1-shot': 21.153846153846153, | |
# 'BM-PT3 3-shots': 28.30188679245283, | |
# }, | |
# { | |
# 'model': '[malaysian-llama2-13b-32k](https://huggingface.co/mesolitica/llama-13b-hf-32768-fpf)', | |
# 'BM-PT3 0-shot': 33.33333333333333, | |
# 'BM-PT3 1-shot': 20.37037037037037, | |
# 'BM-PT3 3-shots': 31.48148148148148, | |
# 'Tatabahasa 0-shot': 26.07449856733524, | |
# 'Tatabahasa 1-shot': 25.214899713467048, | |
# 'Tatabahasa 3-shots': 24.355300859598856, | |
# }, | |
# { | |
# 'model': '[malaysian-llama2-13b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-13b-32k-instructions)', | |
# 'BM-PT3 0-shot': 28.57142857142857, | |
# 'BM-PT3 1-shot': 12.244897959183673, | |
# 'BM-PT3 3-shots': 17.307692307692307, | |
# }, | |
# { | |
# 'model': '[mistral-7b](https://huggingface.co/mistralai/Mistral-7B-v0.1)', | |
# 'Tatabahasa 0-shot': 28.939828080229223, | |
# 'Tatabahasa 1-shot': 34.38395415472779, | |
# 'Tatabahasa 3-shots': 32.95128939828081, | |
# }, | |
# { | |
# 'model': '[malaysian-mistral-7b-4k](https://huggingface.co/mesolitica/mistral-7b-4096-fpf)', | |
# 'BM-PT3 0-shot': 20.37037037037037, | |
# 'BM-PT3 1-shot': 22.22222222222222, | |
# 'BM-PT3 3-shots': 33.33333333333333, | |
# 'Tatabahasa 0-shot': 21.48997134670487, | |
# 'Tatabahasa 1-shot': 28.939828080229223, | |
# 'Tatabahasa 3-shots': 24.641833810888254, | |
# }, | |
# { | |
# 'model': '[malaysian-mistral-7b-32k](https://huggingface.co/mesolitica/mistral-7b-32768-fpf)', | |
# 'BM-PT3 0-shot': 16.666666666666664, | |
# 'BM-PT3 1-shot': 16.666666666666664, | |
# 'BM-PT3 3-shots': 25.925925925925924, | |
# 'Tatabahasa 0-shot': 18.624641833810887, | |
# 'Tatabahasa 1-shot': 24.355300859598856, | |
# 'Tatabahasa 3-shots': 28.653295128939828, | |
# }, | |
# { | |
# 'model': '[malaysian-mistral-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)', | |
# 'BM-PT3 0-shot': 35.18518518518518, | |
# 'BM-PT3 1-shot': 33.33333333333333, | |
# 'BM-PT3 3-shots': 37.03703703703704, | |
# 'Tatabahasa 0-shot': 55.014326647564474, | |
# 'Tatabahasa 1-shot': 42.693409742120345, | |
# 'Tatabahasa 3-shots': 33.33333333333333, | |
# }, | |
# { | |
# 'model': '[aisingapore/sealion3b](https://huggingface.co/aisingapore/sealion3b)', | |
# 'BM-PT3 0-shot': 20.37037037037037, | |
# 'BM-PT3 1-shot': 25.925925925925924, | |
# 'BM-PT3 3-shots': 31.48148148148148, | |
# 'Tatabahasa 0-shot': 21.776504297994272, | |
# 'Tatabahasa 1-shot': 21.776504297994272, | |
# 'Tatabahasa 3-shots': 24.641833810888254, | |
# }, | |
# { | |
# 'model': '[aisingapore/sealion7b](https://huggingface.co/aisingapore/sealion7b)', | |
# 'BM-PT3 0-shot': 20.37037037037037, | |
# 'BM-PT3 1-shot': 24.074074074074073, | |
# 'BM-PT3 3-shots': 33.33333333333333, | |
# 'Tatabahasa 0-shot': 25.787965616045845, | |
# 'Tatabahasa 1-shot': 27.507163323782237, | |
# 'Tatabahasa 3-shots': 26.07449856733524, | |
# } | |
# ] | |
# data = pd.DataFrame(close_source + open_source) | |
# demo = gr.Blocks(css=custom_css) | |
# with demo: | |
# gr.HTML(TITLE) | |
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
# gr.DataFrame(data, datatype = 'markdown') | |
# demo.launch() | |
import gradio as gr | |
demo = gr.Blocks() | |
with demo: | |
gr.HTML('helo') | |
demo.launch() |