File size: 6,612 Bytes
e016664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# import gradio as gr
# import pandas as pd
# from css_html_js import custom_css
# TITLE = """<h1 align="center" id="space-title">π²πΎ Malay LLM Leaderboard</h1>"""
# INTRODUCTION_TEXT = """
# π The π²πΎ Malay LLM Leaderboard aims to track, rank and evaluate open LLMs on Malay tasks. All notebooks at https://github.com/mesolitica/llm-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/malay-llm-leaderboard/discussions with link to the notebook.
# ## Dataset
# π We evaluate models based on 3 datasets,
# 1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3
# - This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language.
# 2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com
# - This test is general test for malay grammar.
# 3. Translated IndoNLI to Malay, tested on `test_expert` dataset, https://huggingface.co/datasets/mesolitica/translated-indonli
# - This test is general test to language reasoning.
# 4. HumanEval, https://github.com/openai/human-eval
# - This test is for programming language understanding.
# """
# close_source = [
# {
# 'model': 'gpt-4-1106-preview',
# 'BM-PT3 0-shot': 51.85185185185185,
# 'BM-PT3 1-shot': 66.66666666666666,
# 'BM-PT3 3-shots': 55.55555555555556,
# 'Tatabahasa 0-shot': 75.64469914040114,
# 'Tatabahasa 1-shot': 73.63896848137536,
# 'Tatabahasa 3-shots': 75.64469914040114,
# },
# {
# 'model': 'gpt-3.5-turbo-0613',
# 'BM-PT3 0-shot': 36.53846153846153,
# 'BM-PT3 1-shot': 28.846153846153843,
# 'BM-PT3 3-shots': 24.528301886792452,
# 'Tatabahasa 0-shot': 59.530791788856305,
# 'Tatabahasa 1-shot': 60.80691642651297,
# 'Tatabahasa 3-shots': 63.03724928366762,
# },
# {
# 'model': 'Antrophic Claude 2',
# 'Tatabahasa 0-shot': 61,
# 'Tatabahasa 3-shots': 57.8,
# },
# {
# 'model': 'Antrophic Claude 1',
# 'Tatabahasa 3-shots': 67,
# },
# ]
# open_source = [
# {
# 'model': '[llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)',
# 'Tatabahasa 0-shot': 24.355300859598856,
# 'Tatabahasa 1-shot': 28.08022922636103,
# 'Tatabahasa 3-shots': 24.641833810888254,
# },
# {
# 'model': '[malaysian-llama2-7b-32k](https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf)',
# 'BM-PT3 0-shot': 20.37037037037037,
# 'BM-PT3 1-shot': 20.37037037037037,
# 'BM-PT3 3-shots': 29.629629629629626,
# 'Tatabahasa 0-shot': 17.765042979942695,
# 'Tatabahasa 1-shot': 24.068767908309454,
# 'Tatabahasa 3-shots': 27.507163323782237,
# },
# {
# 'model': '[malaysian-llama2-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-7b-32k-instructions)',
# 'BM-PT3 0-shot': 35.294117647058826,
# 'BM-PT3 1-shot': 21.153846153846153,
# 'BM-PT3 3-shots': 28.30188679245283,
# },
# {
# 'model': '[malaysian-llama2-13b-32k](https://huggingface.co/mesolitica/llama-13b-hf-32768-fpf)',
# 'BM-PT3 0-shot': 33.33333333333333,
# 'BM-PT3 1-shot': 20.37037037037037,
# 'BM-PT3 3-shots': 31.48148148148148,
# 'Tatabahasa 0-shot': 26.07449856733524,
# 'Tatabahasa 1-shot': 25.214899713467048,
# 'Tatabahasa 3-shots': 24.355300859598856,
# },
# {
# 'model': '[malaysian-llama2-13b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-13b-32k-instructions)',
# 'BM-PT3 0-shot': 28.57142857142857,
# 'BM-PT3 1-shot': 12.244897959183673,
# 'BM-PT3 3-shots': 17.307692307692307,
# },
# {
# 'model': '[mistral-7b](https://huggingface.co/mistralai/Mistral-7B-v0.1)',
# 'Tatabahasa 0-shot': 28.939828080229223,
# 'Tatabahasa 1-shot': 34.38395415472779,
# 'Tatabahasa 3-shots': 32.95128939828081,
# },
# {
# 'model': '[malaysian-mistral-7b-4k](https://huggingface.co/mesolitica/mistral-7b-4096-fpf)',
# 'BM-PT3 0-shot': 20.37037037037037,
# 'BM-PT3 1-shot': 22.22222222222222,
# 'BM-PT3 3-shots': 33.33333333333333,
# 'Tatabahasa 0-shot': 21.48997134670487,
# 'Tatabahasa 1-shot': 28.939828080229223,
# 'Tatabahasa 3-shots': 24.641833810888254,
# },
# {
# 'model': '[malaysian-mistral-7b-32k](https://huggingface.co/mesolitica/mistral-7b-32768-fpf)',
# 'BM-PT3 0-shot': 16.666666666666664,
# 'BM-PT3 1-shot': 16.666666666666664,
# 'BM-PT3 3-shots': 25.925925925925924,
# 'Tatabahasa 0-shot': 18.624641833810887,
# 'Tatabahasa 1-shot': 24.355300859598856,
# 'Tatabahasa 3-shots': 28.653295128939828,
# },
# {
# 'model': '[malaysian-mistral-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)',
# 'BM-PT3 0-shot': 35.18518518518518,
# 'BM-PT3 1-shot': 33.33333333333333,
# 'BM-PT3 3-shots': 37.03703703703704,
# 'Tatabahasa 0-shot': 55.014326647564474,
# 'Tatabahasa 1-shot': 42.693409742120345,
# 'Tatabahasa 3-shots': 33.33333333333333,
# },
# {
# 'model': '[aisingapore/sealion3b](https://huggingface.co/aisingapore/sealion3b)',
# 'BM-PT3 0-shot': 20.37037037037037,
# 'BM-PT3 1-shot': 25.925925925925924,
# 'BM-PT3 3-shots': 31.48148148148148,
# 'Tatabahasa 0-shot': 21.776504297994272,
# 'Tatabahasa 1-shot': 21.776504297994272,
# 'Tatabahasa 3-shots': 24.641833810888254,
# },
# {
# 'model': '[aisingapore/sealion7b](https://huggingface.co/aisingapore/sealion7b)',
# 'BM-PT3 0-shot': 20.37037037037037,
# 'BM-PT3 1-shot': 24.074074074074073,
# 'BM-PT3 3-shots': 33.33333333333333,
# 'Tatabahasa 0-shot': 25.787965616045845,
# 'Tatabahasa 1-shot': 27.507163323782237,
# 'Tatabahasa 3-shots': 26.07449856733524,
# }
# ]
# data = pd.DataFrame(close_source + open_source)
# demo = gr.Blocks(css=custom_css)
# with demo:
# gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.DataFrame(data, datatype = 'markdown')
# demo.launch()
import gradio as gr
demo = gr.Blocks()
with demo:
gr.HTML('helo')
demo.launch() |