File size: 9,740 Bytes
a22c27d
 
 
 
 
b58d083
194ef35
484e17c
 
 
 
 
a22c27d
 
484e17c
0c4f5df
498211d
 
a22c27d
78288fb
 
484e17c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a22c27d
 
 
bb0138a
a22c27d
 
 
 
 
bb0138a
a22c27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5b322
 
484e17c
cd5b322
7535b30
119300d
e0fe94c
 
 
 
 
7535b30
484e17c
cd5b322
a22c27d
cd5b322
a22c27d
 
484e17c
8479add
a22c27d
484e17c
a22c27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9dd82
a22c27d
 
 
 
 
 
 
5a9dd82
a22c27d
 
 
 
 
 
 
 
 
 
 
 
 
bb0138a
c1e4972
a22c27d
c1e4972
a22c27d
 
 
 
cd5b322
a22c27d
 
cd5b322
a22c27d
 
32a43f1
a33d005
484e17c
a22c27d
 
e838a85
 
90b8da7
055c3b1
a22c27d
 
 
 
 
 
 
 
 
 
 
 
 
484e17c
 
5a9dd82
bb0138a
 
7535b30
c1e4972
484e17c
4cb03a5
484e17c
c1e4972
 
a22c27d
 
 
 
055c3b1
cd5b322
 
90b8da7
a22c27d
 
484e17c
a22c27d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import pandas as pd
import numpy as np
from NSEDownload import stocks
from time import sleep
import os
from gradio_rangeslider import RangeSlider
from gradio_calendar import Calendar
import datetime

def is_weekday(date: datetime.datetime):
    return date.weekday() < 5

## Get 10 year data from NSE
def get_data(symb,year1,year2):
    symb = symb.upper()
    if os.path.exists(f'{symb}.csv'):
        return
    l = []
    year1 = year1.strftime("%d-%m-%Y")
    year2 = year2.strftime("%d-%m-%Y")
    # year1 =
    # year2 = 
    df = stocks.get_data(stock_symbol=symb, start_date=year1, end_date=year2)
    df.reset_index(drop=False,inplace=True)
    # for i in range(0,10,5):
    #     try:
    #         year = i + year
    #         df = stocks.get_data(stock_symbol=symb, start_date=year1, end_date=year2)
    #         df.reset_index(drop=False,inplace=True)
    #         l.append(df)
    #         sleep(15)
    #     except:
    #         pass
    # dff = pd.concat(l,ignore_index=True)
    df.to_csv(f'{symb}.csv',index=False,encoding='utf-8')
    return

# Calculate profit/loss based on stock price movement after condition is met
def calculate_profit_loss(stock_data,days_to_monitor):
    buy_sell_actions = []
    
    for i in range(len(stock_data)):
        if stock_data['condition'].iloc[i] == 1:  # Trigger condition met
            buy_price = stock_data['Open Price'].iloc[i+1]  # Buy on the next day's open price
            monitored_prices = stock_data.iloc[i+1:i+days_to_monitor]  # Monitor the next 8 days
            
            sell_price = None
            for j in range(len(monitored_prices)):
                no_trigger = 0
                open_price = monitored_prices['Open Price'].iloc[j]
                close_price = monitored_prices['Close Price'].iloc[j]
                change_percent = (close_price - buy_price) / buy_price * 100

                # Check for the +2%, +3%, +5%, +8% thresholds and set stop loss
                if change_percent >= 8:
                    sell_price = close_price
                    break
                elif change_percent >= 5:
                    sell_price = max(sell_price or 0, close_price)
                    if change_percent <= 5:
                        break
                elif change_percent >= 3:
                    sell_price = max(sell_price or 0, close_price)
                    if change_percent <= 3:
                        break
                elif change_percent >= 2:
                    sell_price = max(sell_price or 0, close_price)
                    if change_percent <= 2:
                        break

                # Stop-loss at -3%
                elif change_percent <= -3:
                    sell_price = close_price
                    break

            # If no triggers happen, sell at the 8th day's closing price
            if sell_price is None:
                sell_price = monitored_prices['Close Price'].iloc[-1]
                no_trigger = 1
            
            # Calculate profit/loss percentage
            profit_loss_percent = (sell_price - buy_price) / buy_price * 100
            buy_sell_actions.append({
                'Buy Date': stock_data['Date'].iloc[i+1],
                'Sell Date': monitored_prices['Date'].iloc[j] if sell_price != monitored_prices['Close Price'].iloc[-1] else monitored_prices['Date'].iloc[-1],
                'Buy Price': buy_price,
                'Sell Price': sell_price,
                'Profit/Loss (%)': profit_loss_percent,
                'No trigger': no_trigger
            })

    dft = pd.DataFrame(buy_sell_actions)
    # print(dft.head())

    dff = pd.DataFrame(columns = ['+ve trade probability','Median returns','Mean returns','Best return','Worst return'])
    
    dff['+ve trade probability'] = [round(len(dft[dft['Profit/Loss (%)'] > 0]) / len(dft),3)]
    dff['Mean returns'] = [round(dft['Profit/Loss (%)'].mean(),3)]
    dff['Median returns'] =  [round(dft['Profit/Loss (%)'].median(),3)]
    dff['Best return'] =  [round(dft['Profit/Loss (%)'].max(),3)]
    dff['Worst return'] =  [round(dft['Profit/Loss (%)'].min(),3)]

    # print(dff.head())

    
    return dft, dff

# Example function to simulate loading and processing stock data
def get_stock_data(stock_name,date1,date2,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
    stock_name = stock_name.upper()

    get_data(stock_name,date1,date2)
    
    stock_data = pd.read_csv(f'{stock_name}.csv')

    # Ensure the 'Date' column is in datetime format
    stock_data['Date'] = pd.to_datetime(stock_data['Date'])

    # Sort data by date
    stock_data = stock_data.sort_values(by='Date')
    
    # Calculate daily RSI
    def calculate_rsi(data, window):
        delta = data['Close Price'].diff(1)
        # print(delta)
        gain = np.where(delta > 0, delta, 0)
        loss = np.where(delta < 0, -delta, 0)

        avg_gain = pd.Series(gain).rolling(window=window).mean()
        avg_loss = pd.Series(loss).rolling(window=window).mean()

        rs = avg_gain / avg_loss
        rsi = 100 - (100 / (1 + rs))
        
        return rsi

    # Add a new column 'Daily RSI' for 14-day RSI
    stock_data['Daily RSI'] = calculate_rsi(stock_data, window=rsi_window)

    # Function to calculate sliding weekly RSI
    def calculate_sliding_weekly_rsi(data):
        global weekly_rsi
        weekly_rsi = []
        for i in range(7):
            stock_data1 = stock_data.iloc[i::7].reset_index(drop=True)
            stock_data1['weekly RSI'] = calculate_rsi(stock_data1, window=rsi_window)
            weekly_rsi.append(stock_data1)
        
        stock_data2 = pd.concat(weekly_rsi,ignore_index=True)
        stock_data.drop_duplicates(subset=['Date'],keep='first',inplace=True)
        stock_data2 = stock_data2.sort_values(by='Date')
        
        return stock_data2

    # Calculate sliding weekly RSI
    stock_data = calculate_sliding_weekly_rsi(stock_data)
    stock_data.reset_index(drop=True,inplace=True)

    ## Applying the condition
    for i in range(previous_n_days, len(stock_data)):
        prev_n_days_rsi = stock_data['Daily RSI'][i-previous_n_days:i]
        
        if all(prev_n_days_rsi < rsi_threshold1) and rsi_threshold2[0] <= stock_data['Daily RSI'].iloc[i] <= rsi_threshold2[1]:
            stock_data.at[i, 'condition'] = 1
    
    fstock = stock_data[stock_data['condition']==1].reset_index(drop=True)

    profit_data, summary_data = calculate_profit_loss(stock_data,days_to_monitor)

    # Returning two dataframes: One for the full stock data, another for RSI values
    return fstock, profit_data,summary_data

# Function to save CSV file and return its path
def save_to_csv(stock_input,date1,date2,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2):
    stock_name = stock_input.upper()
    fstock, profit_data,summary_data = get_stock_data(stock_name,date1,date2,rsi_window,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2)
    csv_file_path = f'{stock_name}.csv'

    # fstock['Date'] = pd.to_datetime(fstock['Date']).dt.date
    # profit_data['Date'] = pd.to_datetime(profit_data['Date']).dt.date

    return fstock, profit_data, summary_data, csv_file_path

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        <h1 style="text-align: center; color: #4CAF50;">Stock Analysis Interface</h1>
        <p style="text-align: center;">Enter a stock Symbol and Calculate the algo returns.</p>
        """
    )
    
    with gr.Row():
        with gr.Column():
            stock_input = gr.Textbox(label="Enter Stock Symbol", placeholder="e.g., CANBK", lines=1)
            date1 = Calendar(type="datetime", label="Select starting date", info="Click the calendar icon to bring up the calendar.")
            date2 = Calendar(type="datetime", label="Select ending date", info="Click the calendar icon to bring up the calendar.")
            rsi_window_slider = gr.Slider(minimum=1, maximum=30, value=14, label="RSI Window (Days)", step=1)
            days_to_monitor = gr.Slider(minimum=1, maximum=30, value=8, label="Days to monitor stock once condition is met", step=1)
            rsi_threshold1 = gr.Slider(minimum=1, maximum=100, value=65, label="Previous RSI threshold", step=1)
            previous_n_days = gr.Slider(minimum=1, maximum=180, value=30, label="N -> days to check for RSI threshold", step=1)
            rsi_threshold2 = RangeSlider(label="Current RSI Range", minimum=0, maximum=100, value=[65, 70])
            text1 = "### Wait for few minutes after Submit for the report to generate."
            range_ = gr.Markdown(value=text1)
            rsi_threshold2.change(lambda s: text1, rsi_threshold2, range_,
                                show_progress="hide", trigger_mode="always_last")
            
            submit_button = gr.Button("Submit", variant="primary")
        
        with gr.Column():
            gr.Markdown("<h3 style='text-align: center;'>Output</h3>")
            output_stock_data = gr.DataFrame(label="Dates where Conditions met", interactive=False)
            output_pl_data = gr.DataFrame(label="Profit and Loss Statement", interactive=False)
            output_summary_data = gr.DataFrame(label="Returns Summary", interactive=False)
            csv_download = gr.File(label="Download the full CSV")

    # When the button is clicked, show the two dataframes and provide a downloadable CSV
    submit_button.click(save_to_csv, inputs=[stock_input,date1,date2,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2], outputs=[output_stock_data,output_pl_data, output_summary_data,csv_download])

# Launch the Gradio interface
demo.launch()