tttarun commited on
Commit
119300d
1 Parent(s): 7535b30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -81,7 +81,8 @@ def calculate_profit_loss(stock_data,days_to_monitor):
81
  dft = pd.DataFrame(buy_sell_actions)
82
 
83
  dff = pd.DataFrame(columns = ['+ve trade probability','Median returns','Mean returns','Best return','Worst return'])
84
- dff['+ve trade probability'] = len(dft[dft['Profit/Loss (%)'] > 0])
 
85
  dff['Mean returns'] = dft['Profit/Loss (%)'].mean()
86
  dff['Median returns'] = dft['Profit/Loss (%)'].median()
87
  dff['Best return'] = dft['Profit/Loss (%)'].max()
@@ -166,7 +167,7 @@ def save_to_csv(stock_input,rsi_window,days_to_monitor,previous_n_days,rsi_thres
166
  # fstock['Date'] = pd.to_datetime(fstock['Date']).dt.date
167
  # profit_data['Date'] = pd.to_datetime(profit_data['Date']).dt.date
168
 
169
- return fstock, profit_data, summary_data, csv_file_path
170
 
171
  # Create the Gradio interface
172
  with gr.Blocks() as demo:
@@ -194,13 +195,13 @@ with gr.Blocks() as demo:
194
 
195
  with gr.Column():
196
  gr.Markdown("<h3 style='text-align: center;'>Output</h3>")
197
- output_stock_data = gr.DataFrame(label="Dates where Conditions met", interactive=False)
198
  output_pl_data = gr.DataFrame(label="Profit and Loss Statement", interactive=False)
199
  output_summary_data = gr.DataFrame(label="Returns Summary", interactive=False)
200
  csv_download = gr.File(label="Download the full CSV")
201
 
202
  # When the button is clicked, show the two dataframes and provide a downloadable CSV
203
- submit_button.click(save_to_csv, inputs=[stock_input,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2], outputs=[output_stock_data, output_pl_data, output_summary_data,csv_download])
204
 
205
  # Launch the Gradio interface
206
  demo.launch()
 
81
  dft = pd.DataFrame(buy_sell_actions)
82
 
83
  dff = pd.DataFrame(columns = ['+ve trade probability','Median returns','Mean returns','Best return','Worst return'])
84
+
85
+ dff['+ve trade probability'] = len(dft[dft['Profit/Loss (%)'] > 0]) / len(dft)
86
  dff['Mean returns'] = dft['Profit/Loss (%)'].mean()
87
  dff['Median returns'] = dft['Profit/Loss (%)'].median()
88
  dff['Best return'] = dft['Profit/Loss (%)'].max()
 
167
  # fstock['Date'] = pd.to_datetime(fstock['Date']).dt.date
168
  # profit_data['Date'] = pd.to_datetime(profit_data['Date']).dt.date
169
 
170
+ return profit_data, summary_data, csv_file_path
171
 
172
  # Create the Gradio interface
173
  with gr.Blocks() as demo:
 
195
 
196
  with gr.Column():
197
  gr.Markdown("<h3 style='text-align: center;'>Output</h3>")
198
+ # output_stock_data = gr.DataFrame(label="Dates where Conditions met", interactive=False)
199
  output_pl_data = gr.DataFrame(label="Profit and Loss Statement", interactive=False)
200
  output_summary_data = gr.DataFrame(label="Returns Summary", interactive=False)
201
  csv_download = gr.File(label="Download the full CSV")
202
 
203
  # When the button is clicked, show the two dataframes and provide a downloadable CSV
204
+ submit_button.click(save_to_csv, inputs=[stock_input,rsi_window_slider,days_to_monitor,previous_n_days,rsi_threshold1,rsi_threshold2], outputs=[output_pl_data, output_summary_data,csv_download])
205
 
206
  # Launch the Gradio interface
207
  demo.launch()