File size: 5,855 Bytes
c9baa67
 
 
 
 
 
 
 
 
ebf34ca
c9baa67
 
 
952a171
1a1fa99
 
 
 
 
04c23df
1a1fa99
 
 
 
 
 
 
 
 
 
 
 
c9baa67
 
 
e9d36f9
 
 
c9baa67
 
69f4b00
 
 
1a1fa99
 
e298838
 
c9baa67
 
 
 
 
2791be8
c9baa67
 
 
 
 
1a1fa99
c9baa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6a4a8
c9baa67
 
 
d144755
1a1fa99
 
 
 
c9baa67
 
 
 
1a1fa99
 
 
c9baa67
 
 
cb6a4a8
 
e9d36f9
c9baa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1fa99
c9baa67
 
0fa21cf
c9baa67
1a1fa99
2e394ee
0fa21cf
2e394ee
1a1fa99
 
 
 
 
 
 
 
 
c9baa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1fa99
 
 
c9baa67
 
 
 
 
 
 
 
 
 
 
 
1a1fa99
 
 
c9baa67
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from typing import Tuple
import gradio as gr
import numpy as np
import cv2
import SaRa.saraRC1 as sara
import warnings
warnings.filterwarnings("ignore")


ALPHA = 0.4
GENERATORS = ['itti', 'deepgaze']

MARKDOWN = """
<h1 style='text-align: center'>Saliency Ranking πŸ“š</h1>

Saliency Ranking is a fundamental 🌟 **Computer Vision** 🌟 process aimed at discerning the most visually significant features within an image πŸ–ΌοΈ.

🌟 This demo showcases the **SaRa (Saliency-Driven Object Ranking)** model for Saliency Ranking 🎯, which can efficiently rank the visual saliency of an image without requiring any training. πŸ–ΌοΈ

This technique is configured on the Saliency Map generator model by Itti, which works based on the primate visual cortex 🧠, and can work with or without depth information πŸ”„.

<div style="display: flex; align-items: center;">
    <a href="https://github.com/dylanseychell/SaliencyRanking" style="margin-right: 10px;">
      <img src="https://badges.aleen42.com/src/github.svg">
    </a>
    <a href="https://github.com/mbar0075/SaRa" style="margin-right: 10px;">
      <img src="https://badges.aleen42.com/src/github.svg">
    </a>
    <a href="https://github.com/matthewkenely/ICT3909" style="margin-right: 10px;">
      <img src="https://badges.aleen42.com/src/github.svg">
    </a>
  </div>
"""

IMAGE_EXAMPLES = [
    ['https://media.roboflow.com/supervision/image-examples/people-walking.png', 32],
    ['https://media.roboflow.com/supervision/image-examples/vehicles.png', 32],
    ['https://media.roboflow.com/supervision/image-examples/basketball-1.png', 32],
]

def detect_and_annotate(image, 
                        GRID_SIZE, 
                        generator, 
                        ALPHA=ALPHA,
                        mode=1)-> np.ndarray:
    # Converting from PIL to OpenCV
    image = np.array(image)
    # Convert image from BGR to RGB
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Copy and convert the image for sara processing
    sara_image = image.copy()
    # sara_image = cv2.cvtColor(sara_image, cv2.COLOR_RGB2BGR)

    # Resetting sara
    sara.reset()

    # Running sara (Original implementation on itti)
    sara_info = sara.return_sara(sara_image, GRID_SIZE, generator, mode=mode)

    # Generate saliency map
    saliency_map = sara.return_saliency(image, generator=generator)
    # Resize saliency map to match the image size
    saliency_map = cv2.resize(saliency_map, (image.shape[1], image.shape[0]))

    # Apply color map and convert to RGB
    saliency_map = cv2.applyColorMap(saliency_map, cv2.COLORMAP_JET)
    saliency_map = cv2.cvtColor(saliency_map, cv2.COLOR_BGR2RGB)

    # Overlay the saliency map on the original image
    saliency_map = cv2.addWeighted(saliency_map, ALPHA, image, 1-ALPHA, 0)

    # Extract and convert heatmap to RGB
    heatmap = sara_info[0]
    heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

    return saliency_map, heatmap

def process_image(
    input_image: np.ndarray,
    GRIDSIZE: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    # Validate GRID_SIZE
    if GRIDSIZE is None or GRIDSIZE < 3:
        GRIDSIZE = 9

    itti_saliency_map, itti_heatmap = detect_and_annotate(
        input_image, GRIDSIZE, 'itti')
    _, itti_heatmap2 = detect_and_annotate(
        input_image, GRIDSIZE, 'itti', mode=2)
    # deepgaze_saliency_map, deepgaze_heatmap = detect_and_annotate(
    #     input_image, GRIDSIZE, 'deepgaze')

    return (
        itti_saliency_map,
        itti_heatmap,
        itti_heatmap2,
        # deepgaze_saliency_map,
        # deepgaze_heatmap,
    )

grid_size_Component = gr.Slider(
    minimum=3,
    maximum=100,
    value=32,
    step=1,
    label="Grid Size",
    info=(
        "The grid size for the Saliency Ranking (SaRa) model. The grid size determines "
        "the number of regions the image is divided into. A higher grid size results in "
        "more regions and a lower grid size results in fewer regions. The default grid "
        "size is 9."
    ))


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Accordion("Configuration", open=False):
        with gr.Row():
            grid_size_Component.render()
    with gr.Row():
        input_image_component = gr.Image(
            type='pil',
            label='Input'
        )
        itti_saliency_map = gr.Image(
            type='pil',
            label='Itti Saliency Map'
        )
    with gr.Row():
        itti_heatmap = gr.Image(
            type='pil',
            label='Saliency Ranking Heatmap 1'
        )
        itti_heatmap2 = gr.Image(
            type='pil',
            label='Saliency Ranking Heatmap 2'
        )
    # with gr.Row():
    #     deepgaze_saliency_map = gr.Image(
    #         type='pil',
    #         label='DeepGaze Saliency Map'
    #     )
    #     deepgaze_heatmap = gr.Image(
    #         type='pil',
    #         label='DeepGaze Saliency Ranking Heatmap'
    #     )
    submit_button_component = gr.Button(
        value='Submit',
        scale=1,
        variant='primary'
    )
    gr.Examples(
        fn=process_image,
        examples=IMAGE_EXAMPLES,
        inputs=[
            input_image_component,
            grid_size_Component,
        ],
        outputs=[
            itti_saliency_map,
            itti_heatmap,
            itti_heatmap2,
            # deepgaze_saliency_map,
            # deepgaze_heatmap,
        ]
    )

    submit_button_component.click(
        fn=process_image,
        inputs=[
            input_image_component,
            grid_size_Component,
        ],
        outputs=[
            itti_saliency_map,
            itti_heatmap,
            itti_heatmap2,
            # deepgaze_saliency_map,
            # deepgaze_heatmap,
        ]
    )

demo.launch(debug=False, show_error=True, max_threads=1)