Spaces:
Running
Running
Arranged Markdown
Browse files
app.py
CHANGED
@@ -11,7 +11,25 @@ ALPHA = 0.3
|
|
11 |
GENERATORS = ['itti', 'deepgaze']
|
12 |
|
13 |
MARKDOWN = """
|
14 |
-
<h1 style='text-align: center'>Saliency Ranking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"""
|
16 |
|
17 |
IMAGE_EXAMPLES = [
|
@@ -23,7 +41,8 @@ IMAGE_EXAMPLES = [
|
|
23 |
def detect_and_annotate(image,
|
24 |
GRID_SIZE,
|
25 |
generator,
|
26 |
-
ALPHA=ALPHA
|
|
|
27 |
# Converting from PIL to OpenCV
|
28 |
image = np.array(image)
|
29 |
# Convert image from BGR to RGB
|
@@ -37,7 +56,7 @@ def detect_and_annotate(image,
|
|
37 |
sara.reset()
|
38 |
|
39 |
# Running sara (Original implementation on itti)
|
40 |
-
sara_info = sara.return_sara(sara_image, GRID_SIZE, generator, mode=
|
41 |
|
42 |
# Generate saliency map
|
43 |
saliency_map = sara.return_saliency(image, generator=generator)
|
@@ -67,14 +86,17 @@ def process_image(
|
|
67 |
|
68 |
itti_saliency_map, itti_heatmap = detect_and_annotate(
|
69 |
input_image, GRIDSIZE, 'itti')
|
70 |
-
|
71 |
-
input_image, GRIDSIZE, '
|
|
|
|
|
72 |
|
73 |
return (
|
74 |
itti_saliency_map,
|
75 |
itti_heatmap,
|
76 |
-
|
77 |
-
|
|
|
78 |
)
|
79 |
|
80 |
grid_size_Component = gr.Slider(
|
@@ -101,24 +123,28 @@ with gr.Blocks() as demo:
|
|
101 |
type='pil',
|
102 |
label='Input'
|
103 |
)
|
104 |
-
with gr.Row():
|
105 |
itti_saliency_map = gr.Image(
|
106 |
type='pil',
|
107 |
label='Itti Saliency Map'
|
108 |
)
|
|
|
109 |
itti_heatmap = gr.Image(
|
110 |
type='pil',
|
111 |
label='Itti Saliency Ranking Heatmap'
|
112 |
)
|
113 |
-
|
114 |
-
deepgaze_saliency_map = gr.Image(
|
115 |
type='pil',
|
116 |
-
label='
|
117 |
-
)
|
118 |
-
deepgaze_heatmap = gr.Image(
|
119 |
-
type='pil',
|
120 |
-
label='DeepGaze Saliency Ranking Heatmap'
|
121 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
submit_button_component = gr.Button(
|
123 |
value='Submit',
|
124 |
scale=1,
|
@@ -134,8 +160,9 @@ with gr.Blocks() as demo:
|
|
134 |
outputs=[
|
135 |
itti_saliency_map,
|
136 |
itti_heatmap,
|
137 |
-
|
138 |
-
|
|
|
139 |
]
|
140 |
)
|
141 |
|
@@ -148,8 +175,9 @@ with gr.Blocks() as demo:
|
|
148 |
outputs=[
|
149 |
itti_saliency_map,
|
150 |
itti_heatmap,
|
151 |
-
|
152 |
-
|
|
|
153 |
]
|
154 |
)
|
155 |
|
|
|
11 |
GENERATORS = ['itti', 'deepgaze']
|
12 |
|
13 |
MARKDOWN = """
|
14 |
+
<h1 style='text-align: center'>Saliency Ranking π₯</h1>
|
15 |
+
|
16 |
+
Saliency Ranking is a fundamental π **Computer Vision** π process aimed at discerning the most visually significant features within an image πΌοΈ.
|
17 |
+
|
18 |
+
π This demo showcases the **SaRa (Saliency-Driven Object Ranking)** model for Saliency Ranking π―, which can efficiently rank the visual saliency of an image without requiring any training. πΌοΈ
|
19 |
+
|
20 |
+
This technique is based on the Saliency Map generator model from Itti, which works on the primate visual cortex π§ , and can work with or without depth information π.
|
21 |
+
|
22 |
+
<div style="display: flex; align-items: center;">
|
23 |
+
<a href="https://github.com/dylanseychell/SaliencyRanking" style="margin-right: 10px;">
|
24 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
25 |
+
</a>
|
26 |
+
<a href="https://github.com/mbar0075/SaRa" style="margin-right: 10px;">
|
27 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
28 |
+
</a>
|
29 |
+
<a href="https://github.com/matthewkenely/ICT3909" style="margin-right: 10px;">
|
30 |
+
<img src="https://badges.aleen42.com/src/github.svg">
|
31 |
+
</a>
|
32 |
+
</div>
|
33 |
"""
|
34 |
|
35 |
IMAGE_EXAMPLES = [
|
|
|
41 |
def detect_and_annotate(image,
|
42 |
GRID_SIZE,
|
43 |
generator,
|
44 |
+
ALPHA=ALPHA,
|
45 |
+
mode=1)-> np.ndarray:
|
46 |
# Converting from PIL to OpenCV
|
47 |
image = np.array(image)
|
48 |
# Convert image from BGR to RGB
|
|
|
56 |
sara.reset()
|
57 |
|
58 |
# Running sara (Original implementation on itti)
|
59 |
+
sara_info = sara.return_sara(sara_image, GRID_SIZE, generator, mode=mode)
|
60 |
|
61 |
# Generate saliency map
|
62 |
saliency_map = sara.return_saliency(image, generator=generator)
|
|
|
86 |
|
87 |
itti_saliency_map, itti_heatmap = detect_and_annotate(
|
88 |
input_image, GRIDSIZE, 'itti')
|
89 |
+
_, itti_heatmap2 = detect_and_annotate(
|
90 |
+
input_image, GRIDSIZE, 'itti', mode=2)
|
91 |
+
# deepgaze_saliency_map, deepgaze_heatmap = detect_and_annotate(
|
92 |
+
# input_image, GRIDSIZE, 'deepgaze')
|
93 |
|
94 |
return (
|
95 |
itti_saliency_map,
|
96 |
itti_heatmap,
|
97 |
+
itti_heatmap2,
|
98 |
+
# deepgaze_saliency_map,
|
99 |
+
# deepgaze_heatmap,
|
100 |
)
|
101 |
|
102 |
grid_size_Component = gr.Slider(
|
|
|
123 |
type='pil',
|
124 |
label='Input'
|
125 |
)
|
|
|
126 |
itti_saliency_map = gr.Image(
|
127 |
type='pil',
|
128 |
label='Itti Saliency Map'
|
129 |
)
|
130 |
+
with gr.Row():
|
131 |
itti_heatmap = gr.Image(
|
132 |
type='pil',
|
133 |
label='Itti Saliency Ranking Heatmap'
|
134 |
)
|
135 |
+
itti_heatmap2 = gr.Image(
|
|
|
136 |
type='pil',
|
137 |
+
label='Itti Saliency Ranking Heatmap'
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
+
# with gr.Row():
|
140 |
+
# deepgaze_saliency_map = gr.Image(
|
141 |
+
# type='pil',
|
142 |
+
# label='DeepGaze Saliency Map'
|
143 |
+
# )
|
144 |
+
# deepgaze_heatmap = gr.Image(
|
145 |
+
# type='pil',
|
146 |
+
# label='DeepGaze Saliency Ranking Heatmap'
|
147 |
+
# )
|
148 |
submit_button_component = gr.Button(
|
149 |
value='Submit',
|
150 |
scale=1,
|
|
|
160 |
outputs=[
|
161 |
itti_saliency_map,
|
162 |
itti_heatmap,
|
163 |
+
itti_heatmap2,
|
164 |
+
# deepgaze_saliency_map,
|
165 |
+
# deepgaze_heatmap,
|
166 |
]
|
167 |
)
|
168 |
|
|
|
175 |
outputs=[
|
176 |
itti_saliency_map,
|
177 |
itti_heatmap,
|
178 |
+
itti_heatmap2,
|
179 |
+
# deepgaze_saliency_map,
|
180 |
+
# deepgaze_heatmap,
|
181 |
]
|
182 |
)
|
183 |
|