File size: 17,667 Bytes
182b634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import argparse
import cv2
import time
import os
import shutil
from pathlib import Path
import gradio as gr
from PIL import Image
import numpy as np
from io import BytesIO
import os


source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")

doc_path = os.path.expanduser('~\Documents')
visions_path = os.path.expanduser('~\Documents\\visions of chaos')

import subprocess
import random
parser = argparse.ArgumentParser()
#inpaint
parser.add_argument("--mask", type=str, help="thickness of the mask for seamless inpainting",choices=["thinnest", "thin", "medium", "thick", "thickest"],default="medium")
parser.add_argument("--input",type=str,nargs="?",default="source_img",help="input image",)
parser.add_argument("--indir2",type=str,nargs="?",default="tmp360/tiled_image/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
parser.add_argument("--outdir2",type=str,nargs="?",default="tmp360/original_image2/",help="temp dir to write results to",)
parser.add_argument("--steps2",type=int,default=50,help="number of ddim sampling steps",)
parser.add_argument("--indir3",type=str,nargs="?",default="tmp360/tiled2_image2/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
parser.add_argument("--outdir3",type=str,nargs="?",default="outputs/txt2seamlessimg-samples/",help="dir to write results to",)
parser.add_argument("--steps3",type=int,default=50,help="number of ddim sampling steps",)
    





##first pass of inpainting
import argparse, os, sys, glob
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from main import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler


def make_batch(image, mask, device):
    image = np.array(Image.open(image).convert("RGB"))
    image = image.astype(np.float32)/255.0
    image = image[None].transpose(0,3,1,2)
    image = torch.from_numpy(image)

    mask = np.array(Image.open(mask).convert("L"))
    mask = mask.astype(np.float32)/255.0
    mask = mask[None,None]
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1
    mask = torch.from_numpy(mask)

    masked_image = (1-mask)*image

    batch = {"image": image, "mask": mask, "masked_image": masked_image}
    for k in batch:
        batch[k] = batch[k].to(device=device)
        batch[k] = batch[k]*2.0-1.0
    return batch


if __name__ == "__main__":
		
		opt = parser.parse_args()
		inputimg = opt.input
		destination = 'tmp360/original_image/example1.png'
		#shutil.copy(inputimg, destination)
		from PIL import Image
		import PIL
		img = Image.open(inputimg) # image extension *.png,*.jpg
		new_width  = 512
		new_height = 512
		img = img.resize((new_width, new_height), PIL.Image.LANCZOS)
		img.save('tmp360/original_image/example.png')
		'''p = subprocess.Popen(['mkdir', 'tmp360'])
		p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
		p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
		p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
		p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#		p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
#		masks = opt.mask
#		thinnest = r'seamless/thinnest/1st_mask.png'
#		thin = r'seamless/thin/1st_mask.png'
#		medium = r'seamless/medium/1st_mask.png'
#		thick = r'seamless/thick/1st_mask.png'
#		thickest = r'seamless/thickest/1st_mask.png'
#		
#		if masks == thinnest:
#				'''p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#				print('thinnest mask copied')
#		elif masks == thin:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#				print(opt.mask, 'mask copied')
#		elif masks == medium:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#		elif masks == thick:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#		elif masks == thickest:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#		
#		#	outpath = opt.outdir
#		#	sample_path = os.path.join(outpath, "samples")
#		output555= "outputs/txt2img-samples/samples/example.png"
		
		"""##move opt.output to temp directory###
		source = output555
		destination = 'tmp360/original_image/example.png'
		shutil.move(source, destination)"""
		
		##tile the image
		#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
		#print('image tiled')
		#from PIL import Image # import pillow library (can install with "pip install pillow")
		#im = Image.open('tmp360/tiled2_image/example.png')
		#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
		#im.save('tmp360/tiled2_image/example.png') # saves the image
		# im.show() # opens the image
		subprocess.call([r'crop.bat'])
		print('image center cropped')
		masks1 = sorted(glob.glob(os.path.join(opt.indir2, "*_mask.png")))
		images1 = [x.replace("_mask.png", ".png") for x in masks1]
		print(f"Found {len(masks1)} inputs.")
			
		config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
		model = instantiate_from_config(config.model)
		model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
		                      strict=False)
		device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
		model = model.to(device)
		sampler = DDIMSampler(model)
		os.makedirs(opt.outdir2, exist_ok=True)
		with torch.no_grad():
		    with model.ema_scope():
		        for image, mask in tqdm(zip(images1, masks1)):
		            outpath3 = os.path.join(opt.outdir2, os.path.split(image)[1])
		            batch = make_batch(image, mask, device=device)
		            # encode masked image and concat downsampled mask
		            c = model.cond_stage_model.encode(batch["masked_image"])
		            cc = torch.nn.functional.interpolate(batch["mask"],
		                                                 size=c.shape[-2:])
		            c = torch.cat((c, cc), dim=1)
		            shape = (c.shape[1]-1,)+c.shape[2:]
		            samples_ddim, _ = sampler.sample(S=opt.steps2,
		                                             conditioning=c,
		                                             batch_size=c.shape[0],
		                                             shape=shape,
		                                             verbose=False)
		            x_samples_ddim = model.decode_first_stage(samples_ddim)
		            image = torch.clamp((batch["image"]+1.0)/2.0,
		                                min=0.0, max=1.0)
		            mask = torch.clamp((batch["mask"]+1.0)/2.0,
		                               min=0.0, max=1.0)
		            predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
		                                          min=0.0, max=1.0)
		            inpainted = (1-mask)*image+mask*predicted_image
		            inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
		            Image.fromarray(inpainted.astype(np.uint8)).save(outpath3)


if __name__ == "__main__":
		
		#opt = parser.parse_args()
		#inputimg = outpath3
		#destination = 'tmp360/original_image2/example.png'
		#shutil.copy(inputimg, destination)
		
		'''p = subprocess.Popen(['mkdir', 'tmp360'])
		p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
		p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
		p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
		p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#		p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
#		masks = opt.mask
#		thinnest = r'seamless/thinnest/1st_mask.png'
#		thin = r'seamless/thin/1st_mask.png'
#		medium = r'seamless/medium/1st_mask.png'
#		thick = r'seamless/thick/1st_mask.png'
#		thickest = r'seamless/thickest/1st_mask.png'
#		
#		if masks == thinnest:
#				'''p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/example_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#				print('thinnest mask copied')
#		elif masks == thin:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#				print(opt.mask, 'mask copied')
#		elif masks == medium:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#		elif masks == thick:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
#		elif masks == thickest:
#				p = subprocess.Popen(['mkdir', 'tmp360'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
#				p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
#				print('temporary directories made')
#				print('copying',opt.mask ,'mask to dir')
#				shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
		
		#	outpath = opt.outdir
		#	sample_path = os.path.join(outpath, "samples")
		#output555= "outputs/txt2img-samples/samples/example.png"
		
		"""##move opt.output to temp directory###
		source = output555
		destination = 'tmp360/original_image/example.png'
		shutil.move(source, destination)"""
		
		##tile the image
		#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
		#print('image tiled')
		#from PIL import Image # import pillow library (can install with "pip install pillow")
		#im = Image.open('tmp360/tiled2_image/example.png')
		#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
		#im.save('tmp360/tiled2_image/example.png') # saves the image
		# im.show() # opens the image
		subprocess.call([r'2ndpass.bat'])
		print('image center cropped')
		masks = sorted(glob.glob(os.path.join(opt.indir3, "*_mask.png")))
		images = [x.replace("_mask.png", ".png") for x in masks]
		print(f"Found {len(masks)} inputs.")
			
		config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
		model = instantiate_from_config(config.model)
		model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
		                      strict=False)
		device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
		model = model.to(device)
		sampler = DDIMSampler(model)
		outpath4 = opt.outdir3
		base_count = len(os.listdir(outpath4))
		os.makedirs(opt.outdir3, exist_ok=True)
		with torch.no_grad():
		    with model.ema_scope():
		        for image, mask in tqdm(zip(images, masks)):
		            outpath4 = os.path.join(opt.outdir3, os.path.split(opt.outdir3)[1])
		            batch = make_batch(image, mask, device=device)
		            # encode masked image and concat downsampled mask
		            c = model.cond_stage_model.encode(batch["masked_image"])
		            cc = torch.nn.functional.interpolate(batch["mask"],
		                                                 size=c.shape[-2:])
		            c = torch.cat((c, cc), dim=1)
		            shape = (c.shape[1]-1,)+c.shape[2:]
		            samples_ddim, _ = sampler.sample(S=opt.steps2,
		                                             conditioning=c,
		                                             batch_size=c.shape[0],
		                                             shape=shape,
		                                             verbose=False)
		            x_samples_ddim = model.decode_first_stage(samples_ddim)
		            image = torch.clamp((batch["image"]+1.0)/2.0,
		                                min=0.0, max=1.0)
		            mask = torch.clamp((batch["mask"]+1.0)/2.0,
		                               min=0.0, max=1.0)
		            predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
		                                          min=0.0, max=1.0)
		            inpainted = (1-mask)*image+mask*predicted_image
		            inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
		            #Image.fromarray(inpainted.astype(np.uint8)).save(outpath4)
		            Image.fromarray(inpainted.astype(np.uint8)).save(os.path.join(outpath4, f"{base_count:05}.png"))
		            base_count += 1

title="make seamless latent diffusion from Stable Diffusion repo"
description="make seamless Stable Diffusion example" 

gr.Interface(fn=infer, inputs=[source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True)