Spaces:
Runtime error
Runtime error
matrixglitch
commited on
Commit
•
182b634
1
Parent(s):
a444299
Upload seamlessmaker512_streamlit.py
Browse files- seamlessmaker512_streamlit.py +347 -0
seamlessmaker512_streamlit.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
from pathlib import Path
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from io import BytesIO
|
11 |
+
import os
|
12 |
+
|
13 |
+
|
14 |
+
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
|
15 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
16 |
+
|
17 |
+
doc_path = os.path.expanduser('~\Documents')
|
18 |
+
visions_path = os.path.expanduser('~\Documents\\visions of chaos')
|
19 |
+
|
20 |
+
import subprocess
|
21 |
+
import random
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
#inpaint
|
24 |
+
parser.add_argument("--mask", type=str, help="thickness of the mask for seamless inpainting",choices=["thinnest", "thin", "medium", "thick", "thickest"],default="medium")
|
25 |
+
parser.add_argument("--input",type=str,nargs="?",default="source_img",help="input image",)
|
26 |
+
parser.add_argument("--indir2",type=str,nargs="?",default="tmp360/tiled_image/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
|
27 |
+
parser.add_argument("--outdir2",type=str,nargs="?",default="tmp360/original_image2/",help="temp dir to write results to",)
|
28 |
+
parser.add_argument("--steps2",type=int,default=50,help="number of ddim sampling steps",)
|
29 |
+
parser.add_argument("--indir3",type=str,nargs="?",default="tmp360/tiled2_image2/",help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",)
|
30 |
+
parser.add_argument("--outdir3",type=str,nargs="?",default="outputs/txt2seamlessimg-samples/",help="dir to write results to",)
|
31 |
+
parser.add_argument("--steps3",type=int,default=50,help="number of ddim sampling steps",)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
##first pass of inpainting
|
39 |
+
import argparse, os, sys, glob
|
40 |
+
from omegaconf import OmegaConf
|
41 |
+
from PIL import Image
|
42 |
+
from tqdm import tqdm
|
43 |
+
import numpy as np
|
44 |
+
import torch
|
45 |
+
from main import instantiate_from_config
|
46 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
47 |
+
|
48 |
+
|
49 |
+
def make_batch(image, mask, device):
|
50 |
+
image = np.array(Image.open(image).convert("RGB"))
|
51 |
+
image = image.astype(np.float32)/255.0
|
52 |
+
image = image[None].transpose(0,3,1,2)
|
53 |
+
image = torch.from_numpy(image)
|
54 |
+
|
55 |
+
mask = np.array(Image.open(mask).convert("L"))
|
56 |
+
mask = mask.astype(np.float32)/255.0
|
57 |
+
mask = mask[None,None]
|
58 |
+
mask[mask < 0.5] = 0
|
59 |
+
mask[mask >= 0.5] = 1
|
60 |
+
mask = torch.from_numpy(mask)
|
61 |
+
|
62 |
+
masked_image = (1-mask)*image
|
63 |
+
|
64 |
+
batch = {"image": image, "mask": mask, "masked_image": masked_image}
|
65 |
+
for k in batch:
|
66 |
+
batch[k] = batch[k].to(device=device)
|
67 |
+
batch[k] = batch[k]*2.0-1.0
|
68 |
+
return batch
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
|
73 |
+
opt = parser.parse_args()
|
74 |
+
inputimg = opt.input
|
75 |
+
destination = 'tmp360/original_image/example1.png'
|
76 |
+
#shutil.copy(inputimg, destination)
|
77 |
+
from PIL import Image
|
78 |
+
import PIL
|
79 |
+
img = Image.open(inputimg) # image extension *.png,*.jpg
|
80 |
+
new_width = 512
|
81 |
+
new_height = 512
|
82 |
+
img = img.resize((new_width, new_height), PIL.Image.LANCZOS)
|
83 |
+
img.save('tmp360/original_image/example.png')
|
84 |
+
'''p = subprocess.Popen(['mkdir', 'tmp360'])
|
85 |
+
p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
86 |
+
p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
87 |
+
p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
88 |
+
p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
89 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
|
90 |
+
# masks = opt.mask
|
91 |
+
# thinnest = r'seamless/thinnest/1st_mask.png'
|
92 |
+
# thin = r'seamless/thin/1st_mask.png'
|
93 |
+
# medium = r'seamless/medium/1st_mask.png'
|
94 |
+
# thick = r'seamless/thick/1st_mask.png'
|
95 |
+
# thickest = r'seamless/thickest/1st_mask.png'
|
96 |
+
#
|
97 |
+
# if masks == thinnest:
|
98 |
+
# '''p = subprocess.Popen(['mkdir', 'tmp360'])
|
99 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
100 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
101 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
102 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
103 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
|
104 |
+
# print('temporary directories made')
|
105 |
+
# print('copying',opt.mask ,'mask to dir')
|
106 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
107 |
+
# print('thinnest mask copied')
|
108 |
+
# elif masks == thin:
|
109 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
110 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
111 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
112 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
113 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
114 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
115 |
+
# print('temporary directories made')
|
116 |
+
# print('copying',opt.mask ,'mask to dir')
|
117 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
118 |
+
# print(opt.mask, 'mask copied')
|
119 |
+
# elif masks == medium:
|
120 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
121 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
122 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
123 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
124 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
125 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
126 |
+
# print('temporary directories made')
|
127 |
+
# print('copying',opt.mask ,'mask to dir')
|
128 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
129 |
+
# elif masks == thick:
|
130 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
131 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
132 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
133 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
134 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
135 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
136 |
+
# print('temporary directories made')
|
137 |
+
# print('copying',opt.mask ,'mask to dir')
|
138 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
139 |
+
# elif masks == thickest:
|
140 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
141 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
142 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
143 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
144 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
145 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
146 |
+
# print('temporary directories made')
|
147 |
+
# print('copying',opt.mask ,'mask to dir')
|
148 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
149 |
+
#
|
150 |
+
# # outpath = opt.outdir
|
151 |
+
# # sample_path = os.path.join(outpath, "samples")
|
152 |
+
# output555= "outputs/txt2img-samples/samples/example.png"
|
153 |
+
|
154 |
+
"""##move opt.output to temp directory###
|
155 |
+
source = output555
|
156 |
+
destination = 'tmp360/original_image/example.png'
|
157 |
+
shutil.move(source, destination)"""
|
158 |
+
|
159 |
+
##tile the image
|
160 |
+
#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
|
161 |
+
#print('image tiled')
|
162 |
+
#from PIL import Image # import pillow library (can install with "pip install pillow")
|
163 |
+
#im = Image.open('tmp360/tiled2_image/example.png')
|
164 |
+
#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
|
165 |
+
#im.save('tmp360/tiled2_image/example.png') # saves the image
|
166 |
+
# im.show() # opens the image
|
167 |
+
subprocess.call([r'crop.bat'])
|
168 |
+
print('image center cropped')
|
169 |
+
masks1 = sorted(glob.glob(os.path.join(opt.indir2, "*_mask.png")))
|
170 |
+
images1 = [x.replace("_mask.png", ".png") for x in masks1]
|
171 |
+
print(f"Found {len(masks1)} inputs.")
|
172 |
+
|
173 |
+
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
|
174 |
+
model = instantiate_from_config(config.model)
|
175 |
+
model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
|
176 |
+
strict=False)
|
177 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
178 |
+
model = model.to(device)
|
179 |
+
sampler = DDIMSampler(model)
|
180 |
+
os.makedirs(opt.outdir2, exist_ok=True)
|
181 |
+
with torch.no_grad():
|
182 |
+
with model.ema_scope():
|
183 |
+
for image, mask in tqdm(zip(images1, masks1)):
|
184 |
+
outpath3 = os.path.join(opt.outdir2, os.path.split(image)[1])
|
185 |
+
batch = make_batch(image, mask, device=device)
|
186 |
+
# encode masked image and concat downsampled mask
|
187 |
+
c = model.cond_stage_model.encode(batch["masked_image"])
|
188 |
+
cc = torch.nn.functional.interpolate(batch["mask"],
|
189 |
+
size=c.shape[-2:])
|
190 |
+
c = torch.cat((c, cc), dim=1)
|
191 |
+
shape = (c.shape[1]-1,)+c.shape[2:]
|
192 |
+
samples_ddim, _ = sampler.sample(S=opt.steps2,
|
193 |
+
conditioning=c,
|
194 |
+
batch_size=c.shape[0],
|
195 |
+
shape=shape,
|
196 |
+
verbose=False)
|
197 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
198 |
+
image = torch.clamp((batch["image"]+1.0)/2.0,
|
199 |
+
min=0.0, max=1.0)
|
200 |
+
mask = torch.clamp((batch["mask"]+1.0)/2.0,
|
201 |
+
min=0.0, max=1.0)
|
202 |
+
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
|
203 |
+
min=0.0, max=1.0)
|
204 |
+
inpainted = (1-mask)*image+mask*predicted_image
|
205 |
+
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
|
206 |
+
Image.fromarray(inpainted.astype(np.uint8)).save(outpath3)
|
207 |
+
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
|
211 |
+
#opt = parser.parse_args()
|
212 |
+
#inputimg = outpath3
|
213 |
+
#destination = 'tmp360/original_image2/example.png'
|
214 |
+
#shutil.copy(inputimg, destination)
|
215 |
+
|
216 |
+
'''p = subprocess.Popen(['mkdir', 'tmp360'])
|
217 |
+
p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
218 |
+
p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
219 |
+
p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
220 |
+
p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
221 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
|
222 |
+
# masks = opt.mask
|
223 |
+
# thinnest = r'seamless/thinnest/1st_mask.png'
|
224 |
+
# thin = r'seamless/thin/1st_mask.png'
|
225 |
+
# medium = r'seamless/medium/1st_mask.png'
|
226 |
+
# thick = r'seamless/thick/1st_mask.png'
|
227 |
+
# thickest = r'seamless/thickest/1st_mask.png'
|
228 |
+
#
|
229 |
+
# if masks == thinnest:
|
230 |
+
# '''p = subprocess.Popen(['mkdir', 'tmp360'])
|
231 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
232 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
233 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
234 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
235 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])'''
|
236 |
+
# print('temporary directories made')
|
237 |
+
# print('copying',opt.mask ,'mask to dir')
|
238 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/example_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
239 |
+
# print('thinnest mask copied')
|
240 |
+
# elif masks == thin:
|
241 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
242 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
243 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
244 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
245 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
246 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
247 |
+
# print('temporary directories made')
|
248 |
+
# print('copying',opt.mask ,'mask to dir')
|
249 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thin/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
250 |
+
# print(opt.mask, 'mask copied')
|
251 |
+
# elif masks == medium:
|
252 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
253 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
254 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
255 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
256 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
257 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
258 |
+
# print('temporary directories made')
|
259 |
+
# print('copying',opt.mask ,'mask to dir')
|
260 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/medium/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
261 |
+
# elif masks == thick:
|
262 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
263 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
264 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
265 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
266 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
267 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
268 |
+
# print('temporary directories made')
|
269 |
+
# print('copying',opt.mask ,'mask to dir')
|
270 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thick/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
271 |
+
# elif masks == thickest:
|
272 |
+
# p = subprocess.Popen(['mkdir', 'tmp360'])
|
273 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image'])
|
274 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/original_image2'])
|
275 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image'])
|
276 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled2_image'])
|
277 |
+
# p = subprocess.Popen(['mkdir', 'tmp360/tiled_image2'])
|
278 |
+
# print('temporary directories made')
|
279 |
+
# print('copying',opt.mask ,'mask to dir')
|
280 |
+
# shutil.copy('C:/deepdream-test/stable/stable-diffusion-2/seamless/thickest/1st_mask.png', 'C:/deepdream-test/stable/stable-diffusion-2/tmp360/tiled_image/example_mask.png')
|
281 |
+
|
282 |
+
# outpath = opt.outdir
|
283 |
+
# sample_path = os.path.join(outpath, "samples")
|
284 |
+
#output555= "outputs/txt2img-samples/samples/example.png"
|
285 |
+
|
286 |
+
"""##move opt.output to temp directory###
|
287 |
+
source = output555
|
288 |
+
destination = 'tmp360/original_image/example.png'
|
289 |
+
shutil.move(source, destination)"""
|
290 |
+
|
291 |
+
##tile the image
|
292 |
+
#p = subprocess.Popen(['mogrify', 'convert', '-virtual-pixel', 'tile', '-filter', 'point', '-set', 'option:distort:viewport', '1024x1024', '-distort', 'SRT', '0', '-path', r'tmp360/tiled2_image', r'tmp360/original_image/example.png'])
|
293 |
+
#print('image tiled')
|
294 |
+
#from PIL import Image # import pillow library (can install with "pip install pillow")
|
295 |
+
#im = Image.open('tmp360/tiled2_image/example.png')
|
296 |
+
#im = im.crop( (1, 0, 512, 512) ) # previously, image was 826 pixels wide, cropping to 825 pixels wide
|
297 |
+
#im.save('tmp360/tiled2_image/example.png') # saves the image
|
298 |
+
# im.show() # opens the image
|
299 |
+
subprocess.call([r'2ndpass.bat'])
|
300 |
+
print('image center cropped')
|
301 |
+
masks = sorted(glob.glob(os.path.join(opt.indir3, "*_mask.png")))
|
302 |
+
images = [x.replace("_mask.png", ".png") for x in masks]
|
303 |
+
print(f"Found {len(masks)} inputs.")
|
304 |
+
|
305 |
+
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml")
|
306 |
+
model = instantiate_from_config(config.model)
|
307 |
+
model.load_state_dict(torch.load("C:\deepdream-test\stable\stable-diffusion-2\models\ldm\inpainting_big\last.ckpt")["state_dict"],
|
308 |
+
strict=False)
|
309 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
310 |
+
model = model.to(device)
|
311 |
+
sampler = DDIMSampler(model)
|
312 |
+
outpath4 = opt.outdir3
|
313 |
+
base_count = len(os.listdir(outpath4))
|
314 |
+
os.makedirs(opt.outdir3, exist_ok=True)
|
315 |
+
with torch.no_grad():
|
316 |
+
with model.ema_scope():
|
317 |
+
for image, mask in tqdm(zip(images, masks)):
|
318 |
+
outpath4 = os.path.join(opt.outdir3, os.path.split(opt.outdir3)[1])
|
319 |
+
batch = make_batch(image, mask, device=device)
|
320 |
+
# encode masked image and concat downsampled mask
|
321 |
+
c = model.cond_stage_model.encode(batch["masked_image"])
|
322 |
+
cc = torch.nn.functional.interpolate(batch["mask"],
|
323 |
+
size=c.shape[-2:])
|
324 |
+
c = torch.cat((c, cc), dim=1)
|
325 |
+
shape = (c.shape[1]-1,)+c.shape[2:]
|
326 |
+
samples_ddim, _ = sampler.sample(S=opt.steps2,
|
327 |
+
conditioning=c,
|
328 |
+
batch_size=c.shape[0],
|
329 |
+
shape=shape,
|
330 |
+
verbose=False)
|
331 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
332 |
+
image = torch.clamp((batch["image"]+1.0)/2.0,
|
333 |
+
min=0.0, max=1.0)
|
334 |
+
mask = torch.clamp((batch["mask"]+1.0)/2.0,
|
335 |
+
min=0.0, max=1.0)
|
336 |
+
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
|
337 |
+
min=0.0, max=1.0)
|
338 |
+
inpainted = (1-mask)*image+mask*predicted_image
|
339 |
+
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
|
340 |
+
#Image.fromarray(inpainted.astype(np.uint8)).save(outpath4)
|
341 |
+
Image.fromarray(inpainted.astype(np.uint8)).save(os.path.join(outpath4, f"{base_count:05}.png"))
|
342 |
+
base_count += 1
|
343 |
+
|
344 |
+
title="make seamless latent diffusion from Stable Diffusion repo"
|
345 |
+
description="make seamless Stable Diffusion example"
|
346 |
+
|
347 |
+
gr.Interface(fn=infer, inputs=[source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True)
|