Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import json | |
import torch | |
import wavio | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
from models import AudioDiffusion, DDPMScheduler | |
from audioldm.audio.stft import TacotronSTFT | |
from audioldm.variational_autoencoder import AutoencoderKL | |
from pydub import AudioSegment | |
from gradio import Markdown | |
import torch | |
from diffusers.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import DiffusionPipeline,AudioPipelineOutput | |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast | |
from typing import Union | |
from diffusers.utils.torch_utils import randn_tensor | |
from tqdm import tqdm | |
class Tango2Pipeline(DiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: T5EncoderModel, | |
tokenizer: Union[T5Tokenizer, T5TokenizerFast], | |
unet: UNet2DConditionModel, | |
scheduler: DDPMScheduler | |
): | |
super().__init__() | |
self.register_modules(vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler | |
) | |
def _encode_prompt(self, prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
encoder_hidden_states = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
boolean_encoder_mask = (attention_mask == 1).to(device) | |
return encoder_hidden_states, boolean_encoder_mask | |
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): | |
device = self.text_encoder.device | |
batch = self.tokenizer( | |
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
) | |
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
with torch.no_grad(): | |
prompt_embeds = self.text_encoder( | |
input_ids=input_ids, attention_mask=attention_mask | |
)[0] | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# get unconditional embeddings for classifier free guidance | |
uncond_tokens = [""] * len(prompt) | |
max_length = prompt_embeds.shape[1] | |
uncond_batch = self.tokenizer( | |
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", | |
) | |
uncond_input_ids = uncond_batch.input_ids.to(device) | |
uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
with torch.no_grad(): | |
negative_prompt_embeds = self.text_encoder( | |
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
)[0] | |
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
# For classifier free guidance, we need to do two forward passes. | |
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
boolean_prompt_mask = (prompt_mask == 1).to(device) | |
return prompt_embeds, boolean_prompt_mask | |
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
shape = (batch_size, num_channels_latents, 256, 16) | |
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * inference_scheduler.init_noise_sigma | |
return latents | |
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, | |
disable_progress=True): | |
device = self.text_encoder.device | |
classifier_free_guidance = guidance_scale > 1.0 | |
batch_size = len(prompt) * num_samples_per_prompt | |
if classifier_free_guidance: | |
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) | |
else: | |
prompt_embeds, boolean_prompt_mask = self._encode_text(prompt) | |
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
inference_scheduler.set_timesteps(num_steps, device=device) | |
timesteps = inference_scheduler.timesteps | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) | |
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.unet( | |
latent_model_input, t, encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=boolean_prompt_mask | |
).sample | |
# perform guidance | |
if classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
progress_bar.update(1) | |
return latents | |
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
""" Genrate audio for a single prompt string. """ | |
with torch.no_grad(): | |
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
return AudioPipelineOutput(audios=wave) | |
# Automatic device detection | |
if torch.cuda.is_available(): | |
device_type = "cuda" | |
device_selection = "cuda:0" | |
else: | |
device_type = "cpu" | |
device_selection = "cpu" | |
class Tango: | |
def __init__(self, name="declare-lab/tango2", device=device_selection): | |
path = snapshot_download(repo_id=name) | |
vae_config = json.load(open("{}/vae_config.json".format(path))) | |
stft_config = json.load(open("{}/stft_config.json".format(path))) | |
main_config = json.load(open("{}/main_config.json".format(path))) | |
self.vae = AutoencoderKL(**vae_config).to(device) | |
self.stft = TacotronSTFT(**stft_config).to(device) | |
self.model = AudioDiffusion(**main_config).to(device) | |
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) | |
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) | |
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) | |
self.vae.load_state_dict(vae_weights) | |
self.stft.load_state_dict(stft_weights) | |
self.model.load_state_dict(main_weights) | |
print ("Successfully loaded checkpoint from:", name) | |
self.vae.eval() | |
self.stft.eval() | |
self.model.eval() | |
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") | |
def chunks(self, lst, n): | |
""" Yield successive n-sized chunks from a list. """ | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
""" Genrate audio for a single prompt string. """ | |
with torch.no_grad(): | |
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
return wave[0] | |
def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): | |
""" Genrate audio for a list of prompt strings. """ | |
outputs = [] | |
for k in tqdm(range(0, len(prompts), batch_size)): | |
batch = prompts[k: k+batch_size] | |
with torch.no_grad(): | |
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
mel = self.vae.decode_first_stage(latents) | |
wave = self.vae.decode_to_waveform(mel) | |
outputs += [item for item in wave] | |
if samples == 1: | |
return outputs | |
else: | |
return list(self.chunks(outputs, samples)) | |
# Initialize TANGO | |
tango = Tango(device="cpu") | |
tango.vae.to(device_type) | |
tango.stft.to(device_type) | |
tango.model.to(device_type) | |
pipe = Tango2Pipeline(vae=tango.vae, | |
text_encoder=tango.model.text_encoder, | |
tokenizer=tango.model.tokenizer, | |
unet=tango.model.unet, | |
scheduler=tango.scheduler | |
) | |
def gradio_generate(prompt, output_format, steps, guidance): | |
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above | |
#output_wave = tango.generate(prompt, steps, guidance) | |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" | |
output_wave = output_wave.audios[0] | |
output_filename = "temp.wav" | |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) | |
if (output_format == "mp3"): | |
AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") | |
output_filename = "temp.mp3" | |
return output_filename | |
input_text = gr.Textbox(lines=2, label="Prompt") | |
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") | |
output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
denoising_steps = gr.Slider(minimum=100, maximum=200, value=200, step=1, label="Steps", interactive=True) | |
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
gr_interface = gr.Interface( | |
fn=gradio_generate, | |
inputs=[input_text, output_format, denoising_steps, guidance_scale], | |
outputs=[output_audio], | |
title="SoundAI by tango", | |
theme="Yntec/HaleyCH_Theme_Orange", | |
css=css, | |
allow_flagging=False, | |
examples=[ | |
["Quiet whispered conversation gradually fading into distant jet engine roar diminishing into silence"], | |
["Clear sound of bicycle tires crunching on loose gravel and dirt, followed by deep male laughter echoing"], | |
["Multiple ducks quacking loudly with splashing water and piercing wild animal shriek in background"], | |
["Powerful ocean waves crashing and receding on sandy beach with distant seagulls"], | |
["Gentle female voice cooing and baby responding with happy gurgles and giggles"], | |
["Clear male voice speaking, sharp popping sound, followed by genuine group laughter"], | |
["Stream of water hitting empty ceramic cup, pitch rising as cup fills up"], | |
["Massive crowd erupting in thunderous applause and excited cheering"], | |
["Deep rolling thunder with bright lightning strikes crackling through sky"], | |
["Aggressive dog barking and distressed cat meowing as racing car roars past at high speed"], | |
["Peaceful stream bubbling and birds singing, interrupted by sudden explosive gunshot"], | |
["Man speaking outdoors, goat bleating loudly, metal gate scraping closed, ducks quacking frantically, wind howling into microphone"], | |
["Series of loud aggressive dog barks echoing"], | |
["Multiple distinct cat meows at different pitches"], | |
["Rhythmic wooden table tapping overlaid with steady water pouring sound"], | |
["Sustained crowd applause with camera clicks and amplified male announcer voice"], | |
["Two sharp gunshots followed by panicked birds taking flight with rapid wing flaps"], | |
["Melodic human whistling harmonizing with natural birdsong"], | |
["Deep rhythmic snoring with clear breathing patterns"], | |
["Multiple racing engines revving and accelerating with sharp whistle piercing through"], | |
["Massive stadium crowd cheering as thunder crashes and lightning strikes"], | |
["Heavy helicopter blades chopping through air with engine and wind noise"], | |
["Dog barking excitedly and man shouting as race car engine roars past"] | |
], | |
cache_examples="lazy", # Turn on to cache. | |
) | |
gr_interface.queue(10).launch() |