Sound-AI-SFX / back-cod.py
fantaxy's picture
Create back-cod.py
69c11af verified
raw
history blame
13.8 kB
import spaces
import gradio as gr
import json
import torch
import wavio
from tqdm import tqdm
from huggingface_hub import snapshot_download
from models import AudioDiffusion, DDPMScheduler
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from pydub import AudioSegment
from gradio import Markdown
import torch
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers import DiffusionPipeline,AudioPipelineOutput
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
from typing import Union
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm
class Tango2Pipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
unet: UNet2DConditionModel,
scheduler: DDPMScheduler
):
super().__init__()
self.register_modules(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler
)
def _encode_prompt(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
@torch.no_grad()
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True):
device = self.text_encoder.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
return latents
@torch.no_grad()
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
""" Genrate audio for a single prompt string. """
with torch.no_grad():
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return AudioPipelineOutput(audios=wave)
# Automatic device detection
if torch.cuda.is_available():
device_type = "cuda"
device_selection = "cuda:0"
else:
device_type = "cpu"
device_selection = "cpu"
class Tango:
def __init__(self, name="declare-lab/tango2", device=device_selection):
path = snapshot_download(repo_id=name)
vae_config = json.load(open("{}/vae_config.json".format(path)))
stft_config = json.load(open("{}/stft_config.json".format(path)))
main_config = json.load(open("{}/main_config.json".format(path)))
self.vae = AutoencoderKL(**vae_config).to(device)
self.stft = TacotronSTFT(**stft_config).to(device)
self.model = AudioDiffusion(**main_config).to(device)
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
self.vae.load_state_dict(vae_weights)
self.stft.load_state_dict(stft_weights)
self.model.load_state_dict(main_weights)
print ("Successfully loaded checkpoint from:", name)
self.vae.eval()
self.stft.eval()
self.model.eval()
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
def chunks(self, lst, n):
""" Yield successive n-sized chunks from a list. """
for i in range(0, len(lst), n):
yield lst[i:i + n]
def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
""" Genrate audio for a single prompt string. """
with torch.no_grad():
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
return wave[0]
def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
""" Genrate audio for a list of prompt strings. """
outputs = []
for k in tqdm(range(0, len(prompts), batch_size)):
batch = prompts[k: k+batch_size]
with torch.no_grad():
latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
mel = self.vae.decode_first_stage(latents)
wave = self.vae.decode_to_waveform(mel)
outputs += [item for item in wave]
if samples == 1:
return outputs
else:
return list(self.chunks(outputs, samples))
# Initialize TANGO
tango = Tango(device="cpu")
tango.vae.to(device_type)
tango.stft.to(device_type)
tango.model.to(device_type)
pipe = Tango2Pipeline(vae=tango.vae,
text_encoder=tango.model.text_encoder,
tokenizer=tango.model.tokenizer,
unet=tango.model.unet,
scheduler=tango.scheduler
)
@spaces.GPU(duration=60)
def gradio_generate(prompt, output_format, steps, guidance):
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
#output_wave = tango.generate(prompt, steps, guidance)
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
output_wave = output_wave.audios[0]
output_filename = "temp.wav"
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
if (output_format == "mp3"):
AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
output_filename = "temp.mp3"
return output_filename
input_text = gr.Textbox(lines=2, label="Prompt")
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=100, maximum=200, value=200, step=1, label="Steps", interactive=True)
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
css = """
footer {
visibility: hidden;
}
"""
gr_interface = gr.Interface(
fn=gradio_generate,
inputs=[input_text, output_format, denoising_steps, guidance_scale],
outputs=[output_audio],
title="SoundAI by tango",
theme="Yntec/HaleyCH_Theme_Orange",
css=css,
allow_flagging=False,
examples=[
["Quiet whispered conversation gradually fading into distant jet engine roar diminishing into silence"],
["Clear sound of bicycle tires crunching on loose gravel and dirt, followed by deep male laughter echoing"],
["Multiple ducks quacking loudly with splashing water and piercing wild animal shriek in background"],
["Powerful ocean waves crashing and receding on sandy beach with distant seagulls"],
["Gentle female voice cooing and baby responding with happy gurgles and giggles"],
["Clear male voice speaking, sharp popping sound, followed by genuine group laughter"],
["Stream of water hitting empty ceramic cup, pitch rising as cup fills up"],
["Massive crowd erupting in thunderous applause and excited cheering"],
["Deep rolling thunder with bright lightning strikes crackling through sky"],
["Aggressive dog barking and distressed cat meowing as racing car roars past at high speed"],
["Peaceful stream bubbling and birds singing, interrupted by sudden explosive gunshot"],
["Man speaking outdoors, goat bleating loudly, metal gate scraping closed, ducks quacking frantically, wind howling into microphone"],
["Series of loud aggressive dog barks echoing"],
["Multiple distinct cat meows at different pitches"],
["Rhythmic wooden table tapping overlaid with steady water pouring sound"],
["Sustained crowd applause with camera clicks and amplified male announcer voice"],
["Two sharp gunshots followed by panicked birds taking flight with rapid wing flaps"],
["Melodic human whistling harmonizing with natural birdsong"],
["Deep rhythmic snoring with clear breathing patterns"],
["Multiple racing engines revving and accelerating with sharp whistle piercing through"],
["Massive stadium crowd cheering as thunder crashes and lightning strikes"],
["Heavy helicopter blades chopping through air with engine and wind noise"],
["Dog barking excitedly and man shouting as race car engine roars past"]
],
cache_examples="lazy", # Turn on to cache.
)
gr_interface.queue(10).launch()