fantaxy commited on
Commit
69c11af
1 Parent(s): 330c880

Create back-cod.py

Browse files
Files changed (1) hide show
  1. back-cod.py +308 -0
back-cod.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import json
4
+ import torch
5
+ import wavio
6
+ from tqdm import tqdm
7
+ from huggingface_hub import snapshot_download
8
+ from models import AudioDiffusion, DDPMScheduler
9
+ from audioldm.audio.stft import TacotronSTFT
10
+ from audioldm.variational_autoencoder import AutoencoderKL
11
+ from pydub import AudioSegment
12
+ from gradio import Markdown
13
+ import torch
14
+ from diffusers.models.unet_2d_condition import UNet2DConditionModel
15
+ from diffusers import DiffusionPipeline,AudioPipelineOutput
16
+ from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
17
+ from typing import Union
18
+ from diffusers.utils.torch_utils import randn_tensor
19
+ from tqdm import tqdm
20
+
21
+ class Tango2Pipeline(DiffusionPipeline):
22
+ def __init__(
23
+ self,
24
+ vae: AutoencoderKL,
25
+ text_encoder: T5EncoderModel,
26
+ tokenizer: Union[T5Tokenizer, T5TokenizerFast],
27
+ unet: UNet2DConditionModel,
28
+ scheduler: DDPMScheduler
29
+ ):
30
+
31
+ super().__init__()
32
+
33
+ self.register_modules(vae=vae,
34
+ text_encoder=text_encoder,
35
+ tokenizer=tokenizer,
36
+ unet=unet,
37
+ scheduler=scheduler
38
+ )
39
+
40
+ def _encode_prompt(self, prompt):
41
+ device = self.text_encoder.device
42
+
43
+ batch = self.tokenizer(
44
+ prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
45
+ )
46
+ input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
47
+
48
+
49
+ encoder_hidden_states = self.text_encoder(
50
+ input_ids=input_ids, attention_mask=attention_mask
51
+ )[0]
52
+
53
+ boolean_encoder_mask = (attention_mask == 1).to(device)
54
+
55
+ return encoder_hidden_states, boolean_encoder_mask
56
+
57
+ def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
58
+ device = self.text_encoder.device
59
+ batch = self.tokenizer(
60
+ prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
61
+ )
62
+ input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
63
+
64
+ with torch.no_grad():
65
+ prompt_embeds = self.text_encoder(
66
+ input_ids=input_ids, attention_mask=attention_mask
67
+ )[0]
68
+
69
+ prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
70
+ attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
71
+
72
+ # get unconditional embeddings for classifier free guidance
73
+ uncond_tokens = [""] * len(prompt)
74
+
75
+ max_length = prompt_embeds.shape[1]
76
+ uncond_batch = self.tokenizer(
77
+ uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
78
+ )
79
+ uncond_input_ids = uncond_batch.input_ids.to(device)
80
+ uncond_attention_mask = uncond_batch.attention_mask.to(device)
81
+
82
+ with torch.no_grad():
83
+ negative_prompt_embeds = self.text_encoder(
84
+ input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
85
+ )[0]
86
+
87
+ negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
88
+ uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
89
+
90
+ # For classifier free guidance, we need to do two forward passes.
91
+ # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
92
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
93
+ prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
94
+ boolean_prompt_mask = (prompt_mask == 1).to(device)
95
+
96
+ return prompt_embeds, boolean_prompt_mask
97
+
98
+ def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
99
+ shape = (batch_size, num_channels_latents, 256, 16)
100
+ latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
101
+ # scale the initial noise by the standard deviation required by the scheduler
102
+ latents = latents * inference_scheduler.init_noise_sigma
103
+ return latents
104
+
105
+ @torch.no_grad()
106
+ def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
107
+ disable_progress=True):
108
+ device = self.text_encoder.device
109
+ classifier_free_guidance = guidance_scale > 1.0
110
+ batch_size = len(prompt) * num_samples_per_prompt
111
+
112
+ if classifier_free_guidance:
113
+ prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
114
+ else:
115
+ prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
116
+ prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
117
+ boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
118
+
119
+ inference_scheduler.set_timesteps(num_steps, device=device)
120
+ timesteps = inference_scheduler.timesteps
121
+
122
+ num_channels_latents = self.unet.config.in_channels
123
+ latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
124
+
125
+ num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
126
+ progress_bar = tqdm(range(num_steps), disable=disable_progress)
127
+
128
+ for i, t in enumerate(timesteps):
129
+ # expand the latents if we are doing classifier free guidance
130
+ latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
131
+ latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
132
+
133
+ noise_pred = self.unet(
134
+ latent_model_input, t, encoder_hidden_states=prompt_embeds,
135
+ encoder_attention_mask=boolean_prompt_mask
136
+ ).sample
137
+
138
+ # perform guidance
139
+ if classifier_free_guidance:
140
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
141
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
142
+
143
+ # compute the previous noisy sample x_t -> x_t-1
144
+ latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
145
+
146
+ # call the callback, if provided
147
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
148
+ progress_bar.update(1)
149
+
150
+ return latents
151
+
152
+ @torch.no_grad()
153
+ def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
154
+ """ Genrate audio for a single prompt string. """
155
+ with torch.no_grad():
156
+ latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
157
+ mel = self.vae.decode_first_stage(latents)
158
+ wave = self.vae.decode_to_waveform(mel)
159
+
160
+
161
+ return AudioPipelineOutput(audios=wave)
162
+
163
+
164
+ # Automatic device detection
165
+ if torch.cuda.is_available():
166
+ device_type = "cuda"
167
+ device_selection = "cuda:0"
168
+ else:
169
+ device_type = "cpu"
170
+ device_selection = "cpu"
171
+
172
+ class Tango:
173
+ def __init__(self, name="declare-lab/tango2", device=device_selection):
174
+
175
+ path = snapshot_download(repo_id=name)
176
+
177
+ vae_config = json.load(open("{}/vae_config.json".format(path)))
178
+ stft_config = json.load(open("{}/stft_config.json".format(path)))
179
+ main_config = json.load(open("{}/main_config.json".format(path)))
180
+
181
+ self.vae = AutoencoderKL(**vae_config).to(device)
182
+ self.stft = TacotronSTFT(**stft_config).to(device)
183
+ self.model = AudioDiffusion(**main_config).to(device)
184
+
185
+ vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
186
+ stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
187
+ main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
188
+
189
+ self.vae.load_state_dict(vae_weights)
190
+ self.stft.load_state_dict(stft_weights)
191
+ self.model.load_state_dict(main_weights)
192
+
193
+ print ("Successfully loaded checkpoint from:", name)
194
+
195
+ self.vae.eval()
196
+ self.stft.eval()
197
+ self.model.eval()
198
+
199
+ self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
200
+
201
+ def chunks(self, lst, n):
202
+ """ Yield successive n-sized chunks from a list. """
203
+ for i in range(0, len(lst), n):
204
+ yield lst[i:i + n]
205
+
206
+ def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
207
+ """ Genrate audio for a single prompt string. """
208
+ with torch.no_grad():
209
+ latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
210
+ mel = self.vae.decode_first_stage(latents)
211
+ wave = self.vae.decode_to_waveform(mel)
212
+ return wave[0]
213
+
214
+ def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
215
+ """ Genrate audio for a list of prompt strings. """
216
+ outputs = []
217
+ for k in tqdm(range(0, len(prompts), batch_size)):
218
+ batch = prompts[k: k+batch_size]
219
+ with torch.no_grad():
220
+ latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
221
+ mel = self.vae.decode_first_stage(latents)
222
+ wave = self.vae.decode_to_waveform(mel)
223
+ outputs += [item for item in wave]
224
+ if samples == 1:
225
+ return outputs
226
+ else:
227
+ return list(self.chunks(outputs, samples))
228
+
229
+ # Initialize TANGO
230
+
231
+ tango = Tango(device="cpu")
232
+ tango.vae.to(device_type)
233
+ tango.stft.to(device_type)
234
+ tango.model.to(device_type)
235
+
236
+ pipe = Tango2Pipeline(vae=tango.vae,
237
+ text_encoder=tango.model.text_encoder,
238
+ tokenizer=tango.model.tokenizer,
239
+ unet=tango.model.unet,
240
+ scheduler=tango.scheduler
241
+ )
242
+
243
+
244
+ @spaces.GPU(duration=60)
245
+ def gradio_generate(prompt, output_format, steps, guidance):
246
+ output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
247
+ #output_wave = tango.generate(prompt, steps, guidance)
248
+ # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
249
+ output_wave = output_wave.audios[0]
250
+ output_filename = "temp.wav"
251
+ wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
252
+
253
+ if (output_format == "mp3"):
254
+ AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
255
+ output_filename = "temp.mp3"
256
+
257
+ return output_filename
258
+
259
+
260
+ input_text = gr.Textbox(lines=2, label="Prompt")
261
+ output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
262
+ output_audio = gr.Audio(label="Generated Audio", type="filepath")
263
+ denoising_steps = gr.Slider(minimum=100, maximum=200, value=200, step=1, label="Steps", interactive=True)
264
+ guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
265
+
266
+ css = """
267
+ footer {
268
+ visibility: hidden;
269
+ }
270
+ """
271
+
272
+ gr_interface = gr.Interface(
273
+ fn=gradio_generate,
274
+ inputs=[input_text, output_format, denoising_steps, guidance_scale],
275
+ outputs=[output_audio],
276
+ title="SoundAI by tango",
277
+ theme="Yntec/HaleyCH_Theme_Orange",
278
+ css=css,
279
+ allow_flagging=False,
280
+ examples=[
281
+ ["Quiet whispered conversation gradually fading into distant jet engine roar diminishing into silence"],
282
+ ["Clear sound of bicycle tires crunching on loose gravel and dirt, followed by deep male laughter echoing"],
283
+ ["Multiple ducks quacking loudly with splashing water and piercing wild animal shriek in background"],
284
+ ["Powerful ocean waves crashing and receding on sandy beach with distant seagulls"],
285
+ ["Gentle female voice cooing and baby responding with happy gurgles and giggles"],
286
+ ["Clear male voice speaking, sharp popping sound, followed by genuine group laughter"],
287
+ ["Stream of water hitting empty ceramic cup, pitch rising as cup fills up"],
288
+ ["Massive crowd erupting in thunderous applause and excited cheering"],
289
+ ["Deep rolling thunder with bright lightning strikes crackling through sky"],
290
+ ["Aggressive dog barking and distressed cat meowing as racing car roars past at high speed"],
291
+ ["Peaceful stream bubbling and birds singing, interrupted by sudden explosive gunshot"],
292
+ ["Man speaking outdoors, goat bleating loudly, metal gate scraping closed, ducks quacking frantically, wind howling into microphone"],
293
+ ["Series of loud aggressive dog barks echoing"],
294
+ ["Multiple distinct cat meows at different pitches"],
295
+ ["Rhythmic wooden table tapping overlaid with steady water pouring sound"],
296
+ ["Sustained crowd applause with camera clicks and amplified male announcer voice"],
297
+ ["Two sharp gunshots followed by panicked birds taking flight with rapid wing flaps"],
298
+ ["Melodic human whistling harmonizing with natural birdsong"],
299
+ ["Deep rhythmic snoring with clear breathing patterns"],
300
+ ["Multiple racing engines revving and accelerating with sharp whistle piercing through"],
301
+ ["Massive stadium crowd cheering as thunder crashes and lightning strikes"],
302
+ ["Heavy helicopter blades chopping through air with engine and wind noise"],
303
+ ["Dog barking excitedly and man shouting as race car engine roars past"]
304
+ ],
305
+ cache_examples="lazy", # Turn on to cache.
306
+ )
307
+
308
+ gr_interface.queue(10).launch()