|
import spaces |
|
import gradio as gr |
|
from huggingface_hub import ModelCard |
|
|
|
from config import Config |
|
from .models import * |
|
from .handlers import gen_img |
|
|
|
|
|
def update_model_options(model): |
|
for m in Config.IMAGES_MODELS: |
|
if m['repo_id'] == model: |
|
if m['loader'] == 'flux': |
|
return ( |
|
gr.update( |
|
visible=False |
|
), |
|
gr.update( |
|
value=[(lora['image'], lora['title']) for lora in Config.IMAGES_LORAS_FLUX] |
|
), |
|
gr.update( |
|
visible=False |
|
), |
|
gr.update( |
|
visible=False |
|
), |
|
gr.update( |
|
value='fm_euler' |
|
), |
|
gr.update( |
|
visible=False |
|
), |
|
gr.update( |
|
value=3.5 |
|
) |
|
) |
|
|
|
elif m['loader'] == 'sdxl': |
|
return ( |
|
gr.update( |
|
visible=True |
|
), |
|
gr.update( |
|
value=[(lora['image'], lora['title']) for lora in Config.IMAGES_LORAS_SDXL] |
|
), |
|
gr.update( |
|
visible=True |
|
), |
|
gr.update( |
|
visible=True |
|
), |
|
gr.update( |
|
value='dpmpp_2m_sde_k' |
|
), |
|
gr.update( |
|
visible=True |
|
), |
|
gr.update( |
|
value=7.0 |
|
) |
|
) |
|
|
|
|
|
def update_fast_generation(model, fast_generation): |
|
for m in Config.IMAGES_MODELS: |
|
if m['repo_id'] == model: |
|
if m['loader'] == 'flux': |
|
if fast_generation: |
|
return ( |
|
gr.update( |
|
value=8 |
|
), |
|
gr.update( |
|
value=3.5 |
|
) |
|
) |
|
else: |
|
return ( |
|
gr.update( |
|
value=20 |
|
), |
|
gr.update( |
|
value=3.5 |
|
) |
|
) |
|
elif m['loader'] == 'sdxl': |
|
if fast_generation: |
|
return ( |
|
gr.update( |
|
value=8 |
|
), |
|
gr.update( |
|
value=1.0 |
|
) |
|
) |
|
else: |
|
return ( |
|
gr.update( |
|
value=20 |
|
), |
|
gr.update( |
|
value=7.0 |
|
) |
|
) |
|
|
|
|
|
|
|
def selected_lora_from_gallery(evt: gr.SelectData): |
|
return ( |
|
gr.update( |
|
value=evt.index |
|
) |
|
) |
|
|
|
|
|
def update_selected_lora(custom_lora): |
|
link = custom_lora.split("/") |
|
|
|
if len(link) == 2: |
|
model_card = ModelCard.load(custom_lora) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}""" |
|
|
|
custom_lora_info_css = """ |
|
<style> |
|
.custom-lora-info { |
|
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif; |
|
background: linear-gradient(135deg, #4a90e2, #7b61ff); |
|
color: white; |
|
padding: 16px; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
margin: 16px 0; |
|
} |
|
.custom-lora-header { |
|
font-size: 18px; |
|
font-weight: 600; |
|
margin-bottom: 12px; |
|
} |
|
.custom-lora-content { |
|
display: flex; |
|
align-items: center; |
|
background-color: rgba(255, 255, 255, 0.1); |
|
border-radius: 6px; |
|
padding: 12px; |
|
} |
|
.custom-lora-image { |
|
width: 80px; |
|
height: 80px; |
|
object-fit: cover; |
|
border-radius: 6px; |
|
margin-right: 16px; |
|
} |
|
.custom-lora-text h3 { |
|
margin: 0 0 8px 0; |
|
font-size: 16px; |
|
font-weight: 600; |
|
} |
|
.custom-lora-text small { |
|
font-size: 14px; |
|
opacity: 0.9; |
|
} |
|
.custom-trigger-word { |
|
background-color: rgba(255, 255, 255, 0.2); |
|
padding: 2px 6px; |
|
border-radius: 4px; |
|
font-weight: 600; |
|
} |
|
</style> |
|
""" |
|
|
|
custom_lora_info_html = f""" |
|
<div class="custom-lora-info"> |
|
<div class="custom-lora-header">Custom LoRA: {custom_lora}</div> |
|
<div class="custom-lora-content"> |
|
<img class="custom-lora-image" src="{image_url}" alt="LoRA preview"> |
|
<div class="custom-lora-text"> |
|
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3> |
|
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}" |
|
|
|
return ( |
|
gr.update( |
|
value=custom_lora, |
|
), |
|
gr.update( |
|
value=custom_lora_info_html, |
|
visible=True |
|
) |
|
) |
|
|
|
else: |
|
return ( |
|
gr.update( |
|
value=custom_lora, |
|
), |
|
gr.update( |
|
value=custom_lora_info_html if len(link) == 0 else "", |
|
visible=False |
|
) |
|
) |
|
|
|
|
|
def update_lora_sliders(enabled_loras): |
|
sliders = [] |
|
remove_buttons = [] |
|
|
|
for lora in enabled_loras: |
|
sliders.append( |
|
gr.update( |
|
label=lora.get("repo_id", ""), |
|
info=f"Trigger Word: {lora.get('trigger_word', '')}", |
|
visible=True, |
|
interactive=True |
|
) |
|
) |
|
remove_buttons.append( |
|
gr.update( |
|
visible=True, |
|
interactive=True |
|
) |
|
) |
|
|
|
if len(sliders) < 6: |
|
for i in range(len(sliders), 6): |
|
sliders.append( |
|
gr.update( |
|
visible=False |
|
) |
|
) |
|
remove_buttons.append( |
|
gr.update( |
|
visible=False |
|
) |
|
) |
|
|
|
return *sliders, *remove_buttons |
|
|
|
|
|
def remove_from_enabled_loras(enabled_loras, index): |
|
enabled_loras.pop(index) |
|
return ( |
|
gr.update( |
|
value=enabled_loras |
|
) |
|
) |
|
|
|
|
|
def add_to_enabled_loras(model, selected_lora, enabled_loras): |
|
|
|
for m in Config.IMAGES_MODELS: |
|
if m['repo_id'] == model: |
|
lora_data = [] |
|
if m['loader'] == 'flux': |
|
lora_data = Config.IMAGES_LORAS_FLUX |
|
elif m['loader'] == 'sdxl': |
|
lora_data = Config.IMAGES_LORAS_SDXL |
|
try: |
|
selected_lora = int(selected_lora) |
|
|
|
if 0 <= selected_lora: |
|
lora_info = lora_data[selected_lora] |
|
enabled_loras.append({ |
|
"repo_id": lora_info["repo"], |
|
"trigger_word": lora_info["trigger_word"] |
|
}) |
|
except ValueError: |
|
link = selected_lora.split("/") |
|
if len(link) == 2: |
|
model_card = ModelCard.load(selected_lora) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
enabled_loras.append({ |
|
"repo_id": selected_lora, |
|
"trigger_word": trigger_word |
|
}) |
|
|
|
return ( |
|
gr.update( |
|
value="" |
|
), |
|
gr.update( |
|
value="", |
|
visible=False |
|
), |
|
gr.update( |
|
value=enabled_loras |
|
) |
|
) |
|
|
|
|
|
|
|
def update_custom_embedding(custom_embedding): |
|
link = custom_embedding.split("/") |
|
|
|
if len(link) == 2: |
|
model_card = ModelCard.load(custom_embedding) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"""https://huggingface.co/{custom_embedding}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}""" |
|
|
|
custom_embedding_info_css = """ |
|
<style> |
|
.custom-embedding-info { |
|
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif; |
|
background: linear-gradient(135deg, #4a90e2, #7b61ff); |
|
color: white; |
|
padding: 16px; |
|
border-radius: 8px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
margin: 16px 0; |
|
} |
|
.custom-embedding-header { |
|
font-size: 18px; |
|
font-weight: 600; |
|
margin-bottom: 12px; |
|
} |
|
.custom-embedding-content { |
|
display: flex; |
|
align-items: center; |
|
background-color: rgba(255, 255, 255, 0.1); |
|
border-radius: 6px; |
|
padding: 12px; |
|
} |
|
.custom-embedding-image { |
|
width: 80px; |
|
height: 80px; |
|
object-fit: cover; |
|
border-radius: 6px; |
|
margin-right: 16px; |
|
} |
|
.custom-embedding-text h3 { |
|
margin: 0 0 8px 0; |
|
font-size: 16px; |
|
font-weight: 600; |
|
} |
|
.custom-embedding-text small { |
|
font-size: 14px; |
|
opacity: 0.9; |
|
} |
|
.custom-trigger-word { |
|
background-color: rgba(255, 255, 255, 0.2); |
|
padding: 2px 6px; |
|
border-radius: 4px; |
|
font-weight: 600; |
|
} |
|
</style> |
|
""" |
|
|
|
custom_embedding_info_html = f""" |
|
<div class="custom-embedding-info"> |
|
<div class="custom-embedding-header">Custom Embedding: {custom_embedding}</div> |
|
<div class="custom-embedding-content"> |
|
<img class="custom-embedding-image" src="{image_url}" alt="Embedding preview"> |
|
<div class="custom-embedding-text"> |
|
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3> |
|
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
custom_embedding_info_html = f"{custom_embedding_info_css}{custom_embedding_info_html}" |
|
|
|
return gr.update(value=custom_embedding_info_html, visible=True) |
|
else: |
|
return gr.update(value="", visible=False) |
|
|
|
|
|
def add_to_embeddings(custom_embedding, enabled_embeddings): |
|
link = custom_embedding.split("/") |
|
if len(link) == 2: |
|
if ModelCard.load(custom_embedding): |
|
enabled_embeddings.append(custom_embedding) |
|
|
|
return ( |
|
gr.update( |
|
value="" |
|
), |
|
gr.update( |
|
value="", |
|
visible=False |
|
), |
|
gr.update( |
|
value=enabled_embeddings |
|
) |
|
) |
|
|
|
|
|
def update_enabled_embeddings_list(enabled_embeddings): |
|
return gr.update( |
|
value=enabled_embeddings, |
|
choices=enabled_embeddings |
|
) |
|
|
|
|
|
def update_enabled_embeddings(enabled_embeddings_list): |
|
return gr.update( |
|
value=enabled_embeddings_list |
|
) |
|
|
|
|
|
|
|
@spaces.GPU(duration=75) |
|
def generate_image( |
|
model, prompt, negative_prompt, fast_generation, enabled_loras, enabled_embeddings, |
|
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, |
|
img2img_image, inpaint_image, canny_image, pose_image, depth_image, scribble_image, |
|
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, scribble_strength, |
|
resize_mode, |
|
scheduler, image_height, image_width, image_num_images_per_prompt, |
|
image_num_inference_steps, image_clip_skip, image_guidance_scale, image_seed, |
|
refiner, vae, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
try: |
|
progress(0, "Configuring arguments...") |
|
base_args = { |
|
"model": model, |
|
"prompt": prompt, |
|
|
|
"fast_generation": fast_generation, |
|
"loras": None, |
|
|
|
"resize_mode": resize_mode, |
|
"scheduler": scheduler, |
|
"height": int(image_height), |
|
"width": int(image_width), |
|
"num_images_per_prompt": float(image_num_images_per_prompt), |
|
"num_inference_steps": float(image_num_inference_steps), |
|
|
|
"guidance_scale": image_guidance_scale, |
|
"seed": int(image_seed), |
|
"refiner": refiner, |
|
"vae": vae, |
|
"controlnet_config": None, |
|
} |
|
base_args = BaseReq(**base_args) |
|
|
|
if len(enabled_loras) > 0: |
|
base_args.loras = [] |
|
for enabled_lora, slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]): |
|
if enabled_lora['repo_id']: |
|
base_args.loras.append({ |
|
"repo_id": enabled_lora['repo_id'], |
|
"weight": slider |
|
}) |
|
|
|
|
|
if model in Config.IMAGES_MODELS: |
|
if model['loader'] == 'sdxl': |
|
base_args.negative_prompt = negative_prompt |
|
base_args.clip_skip = image_clip_skip |
|
if len(enabled_embeddings) > 0: |
|
base_args.embeddings = enabled_embeddings |
|
|
|
image = None |
|
mask_image = None |
|
strength = None |
|
|
|
if img2img_image: |
|
image = img2img_image |
|
strength = float(img2img_strength) |
|
|
|
base_args = BaseImg2ImgReq( |
|
**base_args.__dict__, |
|
image=image, |
|
strength=strength |
|
) |
|
elif inpaint_image: |
|
image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None |
|
mask_image = inpaint_image['layers'][0] if image else None |
|
strength = float(inpaint_strength) |
|
|
|
if image and mask_image: |
|
base_args = BaseInpaintReq( |
|
**base_args.__dict__, |
|
image=image, |
|
mask_image=mask_image, |
|
strength=strength |
|
) |
|
elif any([canny_image, pose_image, depth_image]): |
|
base_args.controlnet_config = ControlNetReq( |
|
controlnets=[], |
|
control_images=[], |
|
controlnet_conditioning_scale=[] |
|
) |
|
|
|
if canny_image: |
|
base_args.controlnet_config.controlnets.append("canny") |
|
base_args.controlnet_config.control_images.append(canny_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength)) |
|
if pose_image: |
|
base_args.controlnet_config.controlnets.append("pose") |
|
base_args.controlnet_config.control_images.append(pose_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength)) |
|
if depth_image: |
|
base_args.controlnet_config.controlnets.append("depth") |
|
base_args.controlnet_config.control_images.append(depth_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength)) |
|
if model in Config.IMAGES_MODELS and model['loader'] == 'sdxl' and scribble_image: |
|
base_args.controlnet_config.controlnets.append("scribble") |
|
base_args.controlnet_config.control_images.append(scribble_image) |
|
base_args.controlnet_config.controlnet_conditioning_scale.append(float(scribble_strength)) |
|
else: |
|
base_args = BaseReq(**base_args.__dict__) |
|
|
|
return gr.update( |
|
value=gen_img(base_args, progress), |
|
interactive=True |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Error: {e}") from e |
|
|