File size: 18,453 Bytes
37112ef 3d75865 37112ef 3d75865 37112ef 3d3f40a 37112ef acfdab2 37112ef 20c6eca 37112ef 20c6eca 37112ef 5dc606d 37112ef 20c6eca 37112ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import spaces
import gradio as gr
from huggingface_hub import ModelCard
from config import Config
from .models import *
from .handlers import gen_img
# Common
def update_model_options(model):
for m in Config.IMAGES_MODELS:
if m['repo_id'] == model:
if m['loader'] == 'flux':
return (
gr.update( # negative_prompt
visible=False
),
gr.update( # lora_gallery
value=[(lora['image'], lora['title']) for lora in Config.IMAGES_LORAS_FLUX]
),
gr.update( # embeddings_accordion
visible=False
),
gr.update( # scribble_tab
visible=False
),
gr.update( # scheduler
value='fm_euler'
),
gr.update( # image_clip_skip
visible=False
),
gr.update( # image_guidance_scale
value=3.5
)
)
elif m['loader'] == 'sdxl':
return (
gr.update( # negative_prompt
visible=True
),
gr.update( # lora_gallery
value=[(lora['image'], lora['title']) for lora in Config.IMAGES_LORAS_SDXL]
),
gr.update( # embeddings_accordion
visible=True
),
gr.update( # scribble_tab
visible=True
),
gr.update( # scheduler
value='dpmpp_2m_sde_k'
),
gr.update( # image_clip_skip
visible=True
),
gr.update( # image_guidance_scale
value=7.0
)
)
def update_fast_generation(model, fast_generation):
for m in Config.IMAGES_MODELS:
if m['repo_id'] == model:
if m['loader'] == 'flux':
if fast_generation:
return (
gr.update( # image_num_inference_steps
value=8
),
gr.update( # image_guidance_scale
value=3.5
)
)
else:
return (
gr.update( # image_num_inference_steps
value=20
),
gr.update( # image_guidance_scale
value=3.5
)
)
elif m['loader'] == 'sdxl':
if fast_generation:
return (
gr.update( # image_num_inference_steps
value=8
),
gr.update( # image_guidance_scale
value=1.0
)
)
else:
return (
gr.update( # image_num_inference_steps
value=20
),
gr.update( # image_guidance_scale
value=7.0
)
)
# Loras
def selected_lora_from_gallery(evt: gr.SelectData):
return (
gr.update(
value=evt.index
)
)
def update_selected_lora(custom_lora):
link = custom_lora.split("/")
if len(link) == 2:
model_card = ModelCard.load(custom_lora)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"""https://huggingface.co/{custom_lora}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
custom_lora_info_css = """
<style>
.custom-lora-info {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
background: linear-gradient(135deg, #4a90e2, #7b61ff);
color: white;
padding: 16px;
border-radius: 8px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 16px 0;
}
.custom-lora-header {
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;
}
.custom-lora-content {
display: flex;
align-items: center;
background-color: rgba(255, 255, 255, 0.1);
border-radius: 6px;
padding: 12px;
}
.custom-lora-image {
width: 80px;
height: 80px;
object-fit: cover;
border-radius: 6px;
margin-right: 16px;
}
.custom-lora-text h3 {
margin: 0 0 8px 0;
font-size: 16px;
font-weight: 600;
}
.custom-lora-text small {
font-size: 14px;
opacity: 0.9;
}
.custom-trigger-word {
background-color: rgba(255, 255, 255, 0.2);
padding: 2px 6px;
border-radius: 4px;
font-weight: 600;
}
</style>
"""
custom_lora_info_html = f"""
<div class="custom-lora-info">
<div class="custom-lora-header">Custom LoRA: {custom_lora}</div>
<div class="custom-lora-content">
<img class="custom-lora-image" src="{image_url}" alt="LoRA preview">
<div class="custom-lora-text">
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
</div>
</div>
</div>
"""
custom_lora_info_html = f"{custom_lora_info_css}{custom_lora_info_html}"
return (
gr.update( # selected_lora
value=custom_lora,
),
gr.update( # custom_lora_info
value=custom_lora_info_html,
visible=True
)
)
else:
return (
gr.update( # selected_lora
value=custom_lora,
),
gr.update( # custom_lora_info
value=custom_lora_info_html if len(link) == 0 else "",
visible=False
)
)
def update_lora_sliders(enabled_loras):
sliders = []
remove_buttons = []
for lora in enabled_loras:
sliders.append(
gr.update(
label=lora.get("repo_id", ""),
info=f"Trigger Word: {lora.get('trigger_word', '')}",
visible=True,
interactive=True
)
)
remove_buttons.append(
gr.update(
visible=True,
interactive=True
)
)
if len(sliders) < 6:
for i in range(len(sliders), 6):
sliders.append(
gr.update(
visible=False
)
)
remove_buttons.append(
gr.update(
visible=False
)
)
return *sliders, *remove_buttons
def remove_from_enabled_loras(enabled_loras, index):
enabled_loras.pop(index)
return (
gr.update(
value=enabled_loras
)
)
def add_to_enabled_loras(model, selected_lora, enabled_loras):
for m in Config.IMAGES_MODELS:
if m['repo_id'] == model:
lora_data = []
if m['loader'] == 'flux':
lora_data = Config.IMAGES_LORAS_FLUX
elif m['loader'] == 'sdxl':
lora_data = Config.IMAGES_LORAS_SDXL
try:
selected_lora = int(selected_lora)
if 0 <= selected_lora: # is the index of the lora in the gallery
lora_info = lora_data[selected_lora]
enabled_loras.append({
"repo_id": lora_info["repo"],
"trigger_word": lora_info["trigger_word"]
})
except ValueError:
link = selected_lora.split("/")
if len(link) == 2:
model_card = ModelCard.load(selected_lora)
trigger_word = model_card.data.get("instance_prompt", "")
enabled_loras.append({
"repo_id": selected_lora,
"trigger_word": trigger_word
})
return (
gr.update( # selected_lora
value=""
),
gr.update( # custom_lora_info
value="",
visible=False
),
gr.update( # enabled_loras
value=enabled_loras
)
)
# Custom Embedding
def update_custom_embedding(custom_embedding):
link = custom_embedding.split("/")
if len(link) == 2:
model_card = ModelCard.load(custom_embedding)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"""https://huggingface.co/{custom_embedding}/resolve/main/{model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)}"""
custom_embedding_info_css = """
<style>
.custom-embedding-info {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif;
background: linear-gradient(135deg, #4a90e2, #7b61ff);
color: white;
padding: 16px;
border-radius: 8px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin: 16px 0;
}
.custom-embedding-header {
font-size: 18px;
font-weight: 600;
margin-bottom: 12px;
}
.custom-embedding-content {
display: flex;
align-items: center;
background-color: rgba(255, 255, 255, 0.1);
border-radius: 6px;
padding: 12px;
}
.custom-embedding-image {
width: 80px;
height: 80px;
object-fit: cover;
border-radius: 6px;
margin-right: 16px;
}
.custom-embedding-text h3 {
margin: 0 0 8px 0;
font-size: 16px;
font-weight: 600;
}
.custom-embedding-text small {
font-size: 14px;
opacity: 0.9;
}
.custom-trigger-word {
background-color: rgba(255, 255, 255, 0.2);
padding: 2px 6px;
border-radius: 4px;
font-weight: 600;
}
</style>
"""
custom_embedding_info_html = f"""
<div class="custom-embedding-info">
<div class="custom-embedding-header">Custom Embedding: {custom_embedding}</div>
<div class="custom-embedding-content">
<img class="custom-embedding-image" src="{image_url}" alt="Embedding preview">
<div class="custom-embedding-text">
<h3>{link[1].replace("-", " ").replace("_", " ")}</h3>
<small>{"Using: <span class='custom-trigger-word'>"+trigger_word+"</span> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}</small>
</div>
</div>
</div>
"""
custom_embedding_info_html = f"{custom_embedding_info_css}{custom_embedding_info_html}"
return gr.update(value=custom_embedding_info_html, visible=True)
else:
return gr.update(value="", visible=False)
def add_to_embeddings(custom_embedding, enabled_embeddings):
link = custom_embedding.split("/")
if len(link) == 2:
if ModelCard.load(custom_embedding):
enabled_embeddings.append(custom_embedding)
return (
gr.update( # custom_embedding
value=""
),
gr.update( # custom_embedding_info
value="",
visible=False
),
gr.update( # enabled_embeddings
value=enabled_embeddings
)
)
def update_enabled_embeddings_list(enabled_embeddings):
return gr.update( # enabled_embeddings_list
value=enabled_embeddings,
choices=enabled_embeddings
)
def update_enabled_embeddings(enabled_embeddings_list):
return gr.update( # enabled_embeddings
value=enabled_embeddings_list
)
# Generate Image
@spaces.GPU(duration=75)
def generate_image(
model, prompt, negative_prompt, fast_generation, enabled_loras, enabled_embeddings,
lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5, # type: ignore
img2img_image, inpaint_image, canny_image, pose_image, depth_image, scribble_image, # type: ignore
img2img_strength, inpaint_strength, canny_strength, pose_strength, depth_strength, scribble_strength, # type: ignore
resize_mode,
scheduler, image_height, image_width, image_num_images_per_prompt, # type: ignore
image_num_inference_steps, image_clip_skip, image_guidance_scale, image_seed, # type: ignore
refiner, vae,
progress=gr.Progress(track_tqdm=True)
):
try:
progress(0, "Configuring arguments...")
base_args = {
"model": model,
"prompt": prompt,
# "negative_prompt": negative_prompt,
"fast_generation": fast_generation,
"loras": None,
# "embeddings": None,
"resize_mode": resize_mode,
"scheduler": scheduler,
"height": int(image_height),
"width": int(image_width),
"num_images_per_prompt": float(image_num_images_per_prompt),
"num_inference_steps": float(image_num_inference_steps),
# "clip_skip": None,
"guidance_scale": image_guidance_scale,
"seed": int(image_seed),
"refiner": refiner,
"vae": vae,
"controlnet_config": None,
}
base_args = BaseReq(**base_args)
if len(enabled_loras) > 0:
base_args.loras = []
for enabled_lora, slider in zip(enabled_loras, [lora_slider_0, lora_slider_1, lora_slider_2, lora_slider_3, lora_slider_4, lora_slider_5]):
if enabled_lora['repo_id']:
base_args.loras.append({
"repo_id": enabled_lora['repo_id'],
"weight": slider
})
# Load SDXL related args
if model in Config.IMAGES_MODELS:
if model['loader'] == 'sdxl':
base_args.negative_prompt = negative_prompt
base_args.clip_skip = image_clip_skip
if len(enabled_embeddings) > 0:
base_args.embeddings = enabled_embeddings
image = None
mask_image = None
strength = None
if img2img_image:
image = img2img_image
strength = float(img2img_strength)
base_args = BaseImg2ImgReq(
**base_args.__dict__,
image=image,
strength=strength
)
elif inpaint_image:
image = inpaint_image['background'] if not all(pixel == (0, 0, 0) for pixel in list(inpaint_image['background'].getdata())) else None
mask_image = inpaint_image['layers'][0] if image else None
strength = float(inpaint_strength)
if image and mask_image:
base_args = BaseInpaintReq(
**base_args.__dict__,
image=image,
mask_image=mask_image,
strength=strength
)
elif any([canny_image, pose_image, depth_image]):
base_args.controlnet_config = ControlNetReq(
controlnets=[],
control_images=[],
controlnet_conditioning_scale=[]
)
if canny_image:
base_args.controlnet_config.controlnets.append("canny")
base_args.controlnet_config.control_images.append(canny_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(canny_strength))
if pose_image:
base_args.controlnet_config.controlnets.append("pose")
base_args.controlnet_config.control_images.append(pose_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(pose_strength))
if depth_image:
base_args.controlnet_config.controlnets.append("depth")
base_args.controlnet_config.control_images.append(depth_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(depth_strength))
if model in Config.IMAGES_MODELS and model['loader'] == 'sdxl' and scribble_image:
base_args.controlnet_config.controlnets.append("scribble")
base_args.controlnet_config.control_images.append(scribble_image)
base_args.controlnet_config.controlnet_conditioning_scale.append(float(scribble_strength))
else:
base_args = BaseReq(**base_args.__dict__)
return gr.update(
value=gen_img(base_args, progress),
interactive=True
)
except Exception as e:
raise gr.Error(f"Error: {e}") from e
|