weather / app.py
lyimo's picture
Create app.py
2e8b17e verified
raw
history blame
5.4 kB
import gradio as gr
import requests
import pandas as pd
from sklearn.linear_model import LogisticRegression
import os
# Use environment variables for API keys
API_KEY = os.environ.get("OPENWEATHER_API_KEY")
BASE_URL = 'https://api.openweathermap.org/data/2.5/'
def get_weather_data(location):
current_weather_url = f'{BASE_URL}weather?q={location}&appid={API_KEY}&units=metric'
current_response = requests.get(current_weather_url)
current_data = current_response.json()
current_weather = {
'temperature': current_data['main']['temp'],
'feels_like': current_data['main']['feels_like'],
'description': current_data['weather'][0]['description'],
'wind_speed': current_data['wind']['speed'],
'pressure': current_data['main']['pressure'],
'humidity': current_data['main']['humidity'],
'visibility': current_data['visibility'] / 1000,
'dew_point': current_data['main']['temp'] - ((100 - current_data['main']['humidity']) / 5.0)
}
return current_weather
def train_fog_model():
df = pd.read_csv('fog_weather_data.csv')
df = pd.get_dummies(df, columns=['Description'], drop_first=True)
X = df.drop('Fog', axis=1)
y = df['Fog']
model = LogisticRegression()
model.fit(X, y)
return model, X.columns
def predict_fog(model, feature_columns, weather_data):
new_data = pd.DataFrame({
'Temperature': [weather_data['temperature']],
'Feels like': [weather_data['feels_like']],
'Wind speed': [weather_data['wind_speed']],
'Pressure': [weather_data['pressure']],
'Humidity': [weather_data['humidity']],
'Dew point': [weather_data['dew_point']],
'Visibility': [weather_data['visibility']]
})
for col in feature_columns:
if col.startswith('Description_'):
new_data[col] = 0
description_column = f"Description_{weather_data['description'].replace(' ', '_')}"
if description_column in feature_columns:
new_data[description_column] = 1
prediction = model.predict(new_data)
return "Foggy weather" if prediction[0] == 1 else "Clear weather"
# Load the model once when the app starts
fog_model, feature_columns = train_fog_model()
def predict_current_weather(location):
try:
current_weather = get_weather_data(location)
fog_prediction = predict_fog(fog_model, feature_columns, current_weather)
result = f"Current weather in {location}:\n"
result += f"Temperature: {current_weather['temperature']}°C\n"
result += f"Feels like: {current_weather['feels_like']}°C\n"
result += f"Description: {current_weather['description']}\n"
result += f"Wind speed: {current_weather['wind_speed']} m/s\n"
result += f"Pressure: {current_weather['pressure']} hPa\n"
result += f"Humidity: {current_weather['humidity']}%\n"
result += f"Dew point: {current_weather['dew_point']}°C\n"
result += f"Visibility: {current_weather['visibility']} km\n"
result += f"\nFog Prediction: {fog_prediction}"
return result
except Exception as e:
return f"Error: {str(e)}"
def predict_custom_weather(temperature, feels_like, wind_speed, pressure, humidity, visibility, description):
try:
weather_data = {
'temperature': temperature,
'feels_like': feels_like,
'wind_speed': wind_speed,
'pressure': pressure,
'humidity': humidity,
'visibility': visibility,
'description': description,
'dew_point': temperature - ((100 - humidity) / 5.0)
}
fog_prediction = predict_fog(fog_model, feature_columns, weather_data)
result = "Custom weather prediction:\n"
result += f"Fog Prediction: {fog_prediction}"
return result
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Weather and Fog Prediction")
with gr.Tab("Current Weather Prediction"):
location_input = gr.Textbox(label="Enter Location")
predict_button = gr.Button("Predict Weather")
output = gr.Textbox(label="Prediction Result")
predict_button.click(predict_current_weather, inputs=location_input, outputs=output)
with gr.Tab("Custom Weather Prediction"):
with gr.Row():
temperature = gr.Number(label="Temperature (°C)")
feels_like = gr.Number(label="Feels Like (°C)")
wind_speed = gr.Number(label="Wind Speed (m/s)")
pressure = gr.Number(label="Pressure (hPa)")
with gr.Row():
humidity = gr.Number(label="Humidity (%)")
visibility = gr.Number(label="Visibility (km)")
description = gr.Dropdown(label="Weather Description", choices=["clear sky", "few clouds", "scattered clouds", "broken clouds", "shower rain", "rain", "thunderstorm", "snow", "mist"])
custom_predict_button = gr.Button("Predict Fog")
custom_output = gr.Textbox(label="Prediction Result")
custom_predict_button.click(
predict_custom_weather,
inputs=[temperature, feels_like, wind_speed, pressure, humidity, visibility, description],
outputs=custom_output
)
demo.launch()