Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.linear_model import LogisticRegression
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Use environment variables for API keys
|
8 |
+
API_KEY = os.environ.get("OPENWEATHER_API_KEY")
|
9 |
+
BASE_URL = 'https://api.openweathermap.org/data/2.5/'
|
10 |
+
|
11 |
+
def get_weather_data(location):
|
12 |
+
current_weather_url = f'{BASE_URL}weather?q={location}&appid={API_KEY}&units=metric'
|
13 |
+
current_response = requests.get(current_weather_url)
|
14 |
+
current_data = current_response.json()
|
15 |
+
|
16 |
+
current_weather = {
|
17 |
+
'temperature': current_data['main']['temp'],
|
18 |
+
'feels_like': current_data['main']['feels_like'],
|
19 |
+
'description': current_data['weather'][0]['description'],
|
20 |
+
'wind_speed': current_data['wind']['speed'],
|
21 |
+
'pressure': current_data['main']['pressure'],
|
22 |
+
'humidity': current_data['main']['humidity'],
|
23 |
+
'visibility': current_data['visibility'] / 1000,
|
24 |
+
'dew_point': current_data['main']['temp'] - ((100 - current_data['main']['humidity']) / 5.0)
|
25 |
+
}
|
26 |
+
|
27 |
+
return current_weather
|
28 |
+
|
29 |
+
def train_fog_model():
|
30 |
+
df = pd.read_csv('fog_weather_data.csv')
|
31 |
+
df = pd.get_dummies(df, columns=['Description'], drop_first=True)
|
32 |
+
X = df.drop('Fog', axis=1)
|
33 |
+
y = df['Fog']
|
34 |
+
model = LogisticRegression()
|
35 |
+
model.fit(X, y)
|
36 |
+
return model, X.columns
|
37 |
+
|
38 |
+
def predict_fog(model, feature_columns, weather_data):
|
39 |
+
new_data = pd.DataFrame({
|
40 |
+
'Temperature': [weather_data['temperature']],
|
41 |
+
'Feels like': [weather_data['feels_like']],
|
42 |
+
'Wind speed': [weather_data['wind_speed']],
|
43 |
+
'Pressure': [weather_data['pressure']],
|
44 |
+
'Humidity': [weather_data['humidity']],
|
45 |
+
'Dew point': [weather_data['dew_point']],
|
46 |
+
'Visibility': [weather_data['visibility']]
|
47 |
+
})
|
48 |
+
|
49 |
+
for col in feature_columns:
|
50 |
+
if col.startswith('Description_'):
|
51 |
+
new_data[col] = 0
|
52 |
+
|
53 |
+
description_column = f"Description_{weather_data['description'].replace(' ', '_')}"
|
54 |
+
if description_column in feature_columns:
|
55 |
+
new_data[description_column] = 1
|
56 |
+
|
57 |
+
prediction = model.predict(new_data)
|
58 |
+
return "Foggy weather" if prediction[0] == 1 else "Clear weather"
|
59 |
+
|
60 |
+
# Load the model once when the app starts
|
61 |
+
fog_model, feature_columns = train_fog_model()
|
62 |
+
|
63 |
+
def predict_current_weather(location):
|
64 |
+
try:
|
65 |
+
current_weather = get_weather_data(location)
|
66 |
+
fog_prediction = predict_fog(fog_model, feature_columns, current_weather)
|
67 |
+
|
68 |
+
result = f"Current weather in {location}:\n"
|
69 |
+
result += f"Temperature: {current_weather['temperature']}°C\n"
|
70 |
+
result += f"Feels like: {current_weather['feels_like']}°C\n"
|
71 |
+
result += f"Description: {current_weather['description']}\n"
|
72 |
+
result += f"Wind speed: {current_weather['wind_speed']} m/s\n"
|
73 |
+
result += f"Pressure: {current_weather['pressure']} hPa\n"
|
74 |
+
result += f"Humidity: {current_weather['humidity']}%\n"
|
75 |
+
result += f"Dew point: {current_weather['dew_point']}°C\n"
|
76 |
+
result += f"Visibility: {current_weather['visibility']} km\n"
|
77 |
+
result += f"\nFog Prediction: {fog_prediction}"
|
78 |
+
|
79 |
+
return result
|
80 |
+
except Exception as e:
|
81 |
+
return f"Error: {str(e)}"
|
82 |
+
|
83 |
+
def predict_custom_weather(temperature, feels_like, wind_speed, pressure, humidity, visibility, description):
|
84 |
+
try:
|
85 |
+
weather_data = {
|
86 |
+
'temperature': temperature,
|
87 |
+
'feels_like': feels_like,
|
88 |
+
'wind_speed': wind_speed,
|
89 |
+
'pressure': pressure,
|
90 |
+
'humidity': humidity,
|
91 |
+
'visibility': visibility,
|
92 |
+
'description': description,
|
93 |
+
'dew_point': temperature - ((100 - humidity) / 5.0)
|
94 |
+
}
|
95 |
+
|
96 |
+
fog_prediction = predict_fog(fog_model, feature_columns, weather_data)
|
97 |
+
|
98 |
+
result = "Custom weather prediction:\n"
|
99 |
+
result += f"Fog Prediction: {fog_prediction}"
|
100 |
+
|
101 |
+
return result
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error: {str(e)}"
|
104 |
+
|
105 |
+
# Gradio interface
|
106 |
+
with gr.Blocks() as demo:
|
107 |
+
gr.Markdown("# Weather and Fog Prediction")
|
108 |
+
|
109 |
+
with gr.Tab("Current Weather Prediction"):
|
110 |
+
location_input = gr.Textbox(label="Enter Location")
|
111 |
+
predict_button = gr.Button("Predict Weather")
|
112 |
+
output = gr.Textbox(label="Prediction Result")
|
113 |
+
|
114 |
+
predict_button.click(predict_current_weather, inputs=location_input, outputs=output)
|
115 |
+
|
116 |
+
with gr.Tab("Custom Weather Prediction"):
|
117 |
+
with gr.Row():
|
118 |
+
temperature = gr.Number(label="Temperature (°C)")
|
119 |
+
feels_like = gr.Number(label="Feels Like (°C)")
|
120 |
+
wind_speed = gr.Number(label="Wind Speed (m/s)")
|
121 |
+
pressure = gr.Number(label="Pressure (hPa)")
|
122 |
+
with gr.Row():
|
123 |
+
humidity = gr.Number(label="Humidity (%)")
|
124 |
+
visibility = gr.Number(label="Visibility (km)")
|
125 |
+
description = gr.Dropdown(label="Weather Description", choices=["clear sky", "few clouds", "scattered clouds", "broken clouds", "shower rain", "rain", "thunderstorm", "snow", "mist"])
|
126 |
+
|
127 |
+
custom_predict_button = gr.Button("Predict Fog")
|
128 |
+
custom_output = gr.Textbox(label="Prediction Result")
|
129 |
+
|
130 |
+
custom_predict_button.click(
|
131 |
+
predict_custom_weather,
|
132 |
+
inputs=[temperature, feels_like, wind_speed, pressure, humidity, visibility, description],
|
133 |
+
outputs=custom_output
|
134 |
+
)
|
135 |
+
|
136 |
+
demo.launch()
|