File size: 3,319 Bytes
863aaff 9e66188 7092e6d ded128c d73ed72 863aaff 62fb3c5 710cbf4 c7179a0 28f1ee4 62fb3c5 fae65ac 28f1ee4 863aaff fae65ac 4f4630f 62fb3c5 4f4630f 863aaff addd73b 95ddf62 7989a0a 95ddf62 9b32559 95ddf62 06809c1 95ddf62 eb85cd6 dcc2cb9 028f50a 95ddf62 863aaff addd73b eb85cd6 1acb5c4 77eded5 1acb5c4 6d88495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import numpy as np
import gradio as gr
import torch
from transformers import Dinov2Config, Dinov2Model, Dinov2ForImageClassification, AutoImageProcessor
import torch.nn as nn
import os
import json
from huggingface_hub import hf_hub_download
# DEFINE MODEL NAME
model_name = "DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze"
checkpoint_name = "lombardata/" + model_name
# IMPORT CLASSIFICATION MODEL
def create_head(num_features , number_classes ,dropout_prob=0.5 ,activation_func =nn.ReLU):
features_lst = [num_features , num_features//2 , num_features//4]
layers = []
for in_f ,out_f in zip(features_lst[:-1] , features_lst[1:]):
layers.append(nn.Linear(in_f , out_f))
layers.append(activation_func())
layers.append(nn.BatchNorm1d(out_f))
if dropout_prob !=0 : layers.append(nn.Dropout(dropout_prob))
layers.append(nn.Linear(features_lst[-1] , number_classes))
return nn.Sequential(*layers)
from transformers import Dinov2Config, Dinov2Model
class NewheadDinov2ForImageClassification(Dinov2ForImageClassification):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config)
# Classifier head
self.classifier = create_head(config.hidden_size * 2, config.num_labels)
model = NewheadDinov2ForImageClassification.from_pretrained(checkpoint_name)
# IMPORT MODEL CONFIG PARAMETERS
config_path = hf_hub_download(repo_id=checkpoint_name, filename="config.json")
# Opening JSON file
config_file = open(config_path)
# returns JSON object as
config = json.load(config_file)
# import parameters
id2label = config["id2label"]
label2id = config["label2id"]
image_size = config["image_size"]
classes_names = list(label2id.keys())
# PREDICTIONS
def sigmoid(_outputs):
return 1.0 / (1.0 + np.exp(-_outputs))
def predict(input_image):
image_processor = AutoImageProcessor.from_pretrained(checkpoint_name)
# predict
inputs = image_processor(input_image, return_tensors="pt")
inputs = inputs
with torch.no_grad():
model_outputs = model(**inputs)
outputs = model_outputs["logits"][0]
scores = sigmoid(outputs)
result = {}
i = 0
for score in scores:
label = classes_names[i]
result[label] = float(score)
i += 1
result = {key: result[key] for key in result if result[key] > 0.5}
return result
# Define style
title = "DinoVd'eau image classification"
model_link = "https://huggingface.co/" + checkpoint_name
description = f"This application showcases the capability of artificial intelligence-based systems to identify objects within underwater images. To utilize it, you can either upload your own image or select one of the provided examples for analysis.\nFor predictions, we use this [open-source model]({model_link})"
gr.Interface(
fn=predict,
inputs=gr.Image(shape=(512, 512)),
outputs="label",
title=title,
description=description,
examples=["session_GOPR0106.JPG",
"session_2021_08_30_Mayotte_10_image_00066.jpg",
"session_2018_11_17_kite_Le_Morne_Manawa_G0065777.JPG",
"session_2023_06_28_caplahoussaye_plancha_body_v1B_00_GP1_3_1327.jpeg"]).launch() |