lombardata commited on
Commit
addd73b
·
verified ·
1 Parent(s): 81745aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -15
app.py CHANGED
@@ -47,20 +47,8 @@ id2label = config["id2label"]
47
  label2id = config["label2id"]
48
  image_size = config["image_size"]
49
  classes_names = list(label2id.keys())
50
- '''
51
- # import labels
52
- classes_names = ["Acropore_branched", "Acropore_digitised", "Acropore_tabular", "Algae_assembly",
53
- "Algae_limestone", "Algae_sodding", "Dead_coral", "Fish", "Human_object",
54
- "Living_coral", "Millepore", "No_acropore_encrusting", "No_acropore_massive",
55
- "No_acropore_sub_massive", "Rock", "Sand",
56
- "Scrap", "Sea_cucumber", "Syringodium_isoetifolium",
57
- "Thalassodendron_ciliatum", "Useless"]
58
-
59
- classes_nb = list(np.arange(len(classes_names)))
60
- id2label = {int(classes_nb[i]): classes_names[i] for i in range(len(classes_nb))}
61
- label2id = {v: k for k, v in id2label.items()}
62
- '''
63
 
 
64
  def sigmoid(_outputs):
65
  return 1.0 / (1.0 + np.exp(-_outputs))
66
 
@@ -85,11 +73,11 @@ def predict(input_image):
85
  # Define style
86
  title = "DinoVd'eau image classification"
87
  model_link = "https://huggingface.co/" + checkpoint_name
88
- description = f"This is a prototype application that demonstrates how artificial intelligence-based systems can recognize what object(s) is present in an underwater image. To use it, simply upload your image, or click one of the example images to load them. For predictions, we use the [open-source model]({model_link})"
89
 
90
  gr.Interface(
91
  fn=predict,
92
- inputs=gr.Image(shape=(224, 224)),
93
  outputs="label",
94
  title=title,
95
  description=description,
 
47
  label2id = config["label2id"]
48
  image_size = config["image_size"]
49
  classes_names = list(label2id.keys())
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
+ # PREDICTIONS
52
  def sigmoid(_outputs):
53
  return 1.0 / (1.0 + np.exp(-_outputs))
54
 
 
73
  # Define style
74
  title = "DinoVd'eau image classification"
75
  model_link = "https://huggingface.co/" + checkpoint_name
76
+ description = f"This application showcases the capability of artificial intelligence-based systems to identify objects within underwater images. To utilize it, you can either upload your own image or select one of the provided examples for analysis. For predictions, we use this [open-source model]({model_link})"
77
 
78
  gr.Interface(
79
  fn=predict,
80
+ inputs=gr.Image(shape=(512, 512)),
81
  outputs="label",
82
  title=title,
83
  description=description,