LLMBB-Agent / benchmark /README.md
vlff李飞飞
update md
2319518
|
raw
history blame
8.39 kB
# Code Interpreter Benchmark
## Introduction
To assess LLM's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities.
### Metrics
The metrics are divided into two parts: code executability and code correctness.
- Code executability: evaluating the ability of the LLM-generated code to be executed.
- Code correctness: evaluating whether the LLM-generated code runs correctly.
### Domain
When evaluating the accuracy of the code execution results for code correctness, we further divide it into two specific domains: `Math`, `Visualization`.
In terms of code executability, we calculate executable rate of the generated code for `General problem-solving`.
## Results
- Qwen-7B-Chat refers to the version updated after September 25, 2023.
- The code correctness judger model for `Visualization` has changed from `Qwen-vl-chat` to `gpt-4-vision-preview` in the version 20231206.
<table>
<tr>
<th colspan="5" align="center">In-house Code Interpreter Benchmark (Version 20231206)</th>
</tr>
<tr>
<th rowspan="2" align="center">Model</th>
<th colspan="3" align="center">Accuracy of Code Execution Results (%)</th>
<th colspan="1" align="center">Executable Rate of Code (%)</th>
</tr>
<tr>
<th align="center">Math↑</th><th align="center">Visualization-Hard↑</th><th align="center">Visualization-Easy↑</th><th align="center">General↑</th>
</tr>
<tr>
<td>GPT-4</td>
<td align="center">82.8</td>
<td align="center">66.7</td>
<td align="center">60.8</td>
<td align="center">82.8</td>
</tr>
<tr>
<td>GPT-3.5</td>
<td align="center">47.3</td>
<td align="center">33.3</td>
<td align="center">55.7</td>
<td align="center">74.1</td>
</tr>
<tr>
<td>LLaMA2-13B-Chat</td>
<td align="center">8.3</td>
<td align="center">1.2</td>
<td align="center">15.2</td>
<td align="center">48.3</td>
</tr>
<tr>
<td>CodeLLaMA-13B-Instruct</td>
<td align="center">28.2</td>
<td align="center">15.5</td>
<td align="center">21.5</td>
<td align="center">74.1</td>
</tr>
<tr>
<td>InternLM-20B-Chat</td>
<td align="center">34.6</td>
<td align="center">10.7</td>
<td align="center">24.1</td>
<td align="center">65.5</td>
</tr>
<tr>
<td>ChatGLM3-6B</td>
<td align="center">54.2</td>
<td align="center">4.8</td>
<td align="center">15.2</td>
<td align="center">62.1</td>
</tr>
<tr>
<td>Qwen-1.8B-Chat</td>
<td align="center">25.6</td>
<td align="center">21.4</td>
<td align="center">22.8</td>
<td align="center">65.5</td>
</tr>
<tr>
<td>Qwen-7B-Chat</td>
<td align="center">41.9</td>
<td align="center">23.8</td>
<td align="center">38.0</td>
<td align="center">67.2</td>
</tr>
<tr>
<td>Qwen-14B-Chat</td>
<td align="center">58.4</td>
<td align="center">31.0</td>
<td align="center">45.6</td>
<td align="center">65.5</td>
</tr>
<tr>
<td>Qwen-72B-Chat</td>
<td align="center">72.7</td>
<td align="center">41.7</td>
<td align="center">43.0</td>
<td align="center">82.8</td>
</tr>
</table>
Furthermore, we also provide the results of `Qwen-vl-plus` as the code correctness judger model for `Visualization` task to serve as a reference.
<table>
<tr>
<th colspan="3" align="center">Code Correctness Judger Model = Qwen-vl-plus</th>
</tr>
<tr>
<th rowspan="2" align="center">Model</th>
<th colspan="2" align="center">Accuracy of Code Execution Results (%)</th>
</tr>
<tr>
<th align="center">Visualization-Hard↑</th>
<th align="center">Visualization-Easy↑</th>
</tr>
<tr>
<td>LLaMA2-13B-Chat</td>
<td align="center">2.4</td>
<td align="center">17.7</td>
</tr>
<tr>
<td>CodeLLaMA-13B-Instruct</td>
<td align="center">17.9</td>
<td align="center">34.2</td>
</tr>
<tr>
<td>InternLM-20B-Chat</td>
<td align="center">9.5</td>
<td align="center">31.7</td>
</tr>
<tr>
<td>ChatGLM3-6B</td>
<td align="center">10.7</td>
<td align="center">29.1</td>
</tr>
<tr>
<td>Qwen-1.8B-Chat</td>
<td align="center">32.1</td>
<td align="center">32.9</td>
</tr>
<tr>
<td>Qwen-7B-Chat</td>
<td align="center">26.2</td>
<td align="center">39.2</td>
</tr>
<tr>
<td>Qwen-14B-Chat</td>
<td align="center">36.9</td>
<td align="center">41.8</td>
</tr>
<tr>
<td>Qwen-72B-Chat</td>
<td align="center">38.1</td>
<td align="center">38.0</td>
</tr>
</table>
## Usage
### Installation
```shell
git clone https://github.com/QwenLM/Qwen-Agent.git
cd benchmark
pip install -r requirements.txt
```
### Dataset Download
```shell
cd benchmark
wget https://qianwen-res.oss-cn-beijing.aliyuncs.com/assets/qwen_agent/benchmark_code_interpreter_data.zip
unzip benchmark_code_interpreter_data.zip
mkdir eval_data
mv eval_code_interpreter_v1.jsonl eval_data/
```
### Evaluation
To reproduce the comprehensive results of benchmark, you can run the following script:
```Shell
python inference_and_execute.py --model {model_name}
```
{model_name}:
- qwen-1.8b-chat
- qwen-7b-chat
- qwen-14b-chat
- qwen-72b-chat
- llama-2-7b-chat
- llama-2-13b-chat
- codellama-7b-instruct
- codellama-13b-instruct
- internlm-7b-chat-1.1
- internlm-20b-chat
The benchmark will run the test cases and generate the performance results. The results will be saved in the `output_data` directory.
**Notes**:
Please install `simhei.ttf` font for proper display in matplotlib when evaluating visualization task. You can do this by preparing `simhei.ttf` (which can be found on any Windows PC) and then running the following code snippet:
```python
import os
import matplotlib
target_font_path = os.path.join(
os.path.abspath(
os.path.join(matplotlib.matplotlib_fname(), os.path.pardir)),
'fonts', 'ttf', 'simhei.ttf')
os.system(f'cp simhei.ttf {target_font_path}')
font_list_cache = os.path.join(matplotlib.get_cachedir(), 'fontlist-*.json')
os.system(f'rm -f {font_list_cache}')
```
#### Code Executable Rate
```Shell
python inference_and_execute.py --task {task_name} --model {model_name}
```
{task_name}:
- `general`: General problem-solving task
#### Code Correctness Rate
```Shell
python inference_and_execute.py --task {task_name} --model {model_name}
```
{task_name}:
- `visualization`: Visualization task
- `gsm8k`: Math task
## Configuration
The inference_and_exec.py file contains the following configurable options:
- `--model`: The model to test which can be one of `qwen-72b-chat`, `qwen-14b-chat`, `qwen-7b-chat`, `qwen-1.8b-chat`, `qwen-7b-chat`, `llama-2-7b-chat`, `llama-2-13b-chat`, `codellama-7b-instruct`, `codellama-13b-instruct`, `internlm-7b-chat-1.1`, `internlm-20b-chat`.
- `--task`: The test task which can be one of `all`, `visualization`, `general`, `gsm8k`.
- `--output-path`: The path for saving evaluation result.
- `--input-path`: The path for placing evaluation data.
- `--output-fname`: The file name for evaluation result.
- `--input-fname`: The file name for evaluation data.
- `--force`: Force generation and will overwrite the cached results.
- `--eval-only`: Only calculate evaluation metrics without re-inference.
- `--eval-code-exec-only`: Only evaluate code executable rate
- `--gen-exec-only`: Only generate and execuate code without calculating evaluation metrics.
- `--gen-only`: Only generate without execuating code and calculating evaluation metrics.
- `--vis-judger`: The model to judge the result correctness for `Visualization` task which can be one of `gpt-4-vision-preview`, `qwen-vl-chat`, `qwen-vl-plus`. It is set to `gpt-4-vision-preview` by default in the version 20231206, and `Qwen-vl-chat` has been deprecated.