Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
import kornia | |
import open_clip | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel | |
from lvdm.common import autocast | |
from utils.utils import count_params | |
import os | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class IdentityEncoder(AbstractEncoder): | |
def encode(self, x): | |
return x | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
self.n_classes = n_classes | |
self.ucg_rate = ucg_rate | |
def forward(self, batch, key=None, disable_dropout=False): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
if self.ucg_rate > 0. and not disable_dropout: | |
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) | |
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) | |
c = c.long() | |
c = self.embedding(c) | |
return c | |
def get_unconditional_conditioning(self, bs, device="cuda"): | |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) | |
uc = torch.ones((bs,), device=device) * uc_class | |
uc = {self.key: uc} | |
return uc | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, | |
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
# self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
LAYERS = [ | |
"last", | |
"pooled", | |
"hidden" | |
] | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = layer_idx | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert 0 <= abs(layer_idx) <= 12 | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
# self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden") | |
if self.layer == "last": | |
z = outputs.last_hidden_state | |
elif self.layer == "pooled": | |
z = outputs.pooler_output[:, None, :] | |
else: | |
z = outputs.hidden_states[self.layer_idx] | |
return z | |
def encode(self, text): | |
return self(text) | |
class ClipImageEmbedder(nn.Module): | |
def __init__( | |
self, | |
model, | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=True, | |
ucg_rate=0. | |
): | |
super().__init__() | |
from clip import load as load_clip | |
self.model, _ = load_clip(name=model, device=device, jit=jit) | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.ucg_rate = ucg_rate | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic', align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# re-normalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x, no_dropout=False): | |
# x is assumed to be in range [-1,1] | |
out = self.model.encode_image(self.preprocess(x)) | |
out = out.to(x.dtype) | |
if self.ucg_rate > 0. and not no_dropout: | |
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out | |
return out | |
class FrozenOpenCLIPEmbedder(AbstractEncoder): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
LAYERS = [ | |
# "pooled", | |
"last", | |
"penultimate" | |
] | |
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, | |
freeze=True, layer="last"): | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version,) | |
del model.visual | |
self.model = model | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
self.device = self.model.positional_embedding.device | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
return z | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_final(x) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - self.layer_idx: | |
break | |
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPImageEmbedder(AbstractEncoder): | |
""" | |
Uses the OpenCLIP vision transformer encoder for images | |
""" | |
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, | |
freeze=True, layer="pooled", antialias=True, ucg_rate=0., only_cls=True, use_proj=True, | |
use_shuffle=False, mask_ratio=0.0): | |
super().__init__() | |
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), | |
pretrained=version, ) | |
del model.transformer | |
self.model = model | |
self.mask_ratio = mask_ratio | |
# self.patch_dropout = PatchDropout(prob=patch_dropout, exclude_first_token=True) if patch_dropout > 0.0 else nn.Identity() | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "penultimate": | |
raise NotImplementedError() | |
self.layer_idx = 1 | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.ucg_rate = ucg_rate | |
self.only_cls = only_cls | |
self.use_proj = use_proj | |
self.use_shuffle = use_shuffle | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic', align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, image, use_shuffle=False, drop_prob=None): | |
with torch.no_grad(): | |
z = self.encode_with_vision_transformer(image, use_shuffle, drop_prob) | |
return z.detach().half() | |
def encode_with_vision_transformer(self, img, use_shuffle=False, mask_ratio=None): | |
if mask_ratio is None: | |
mask_ratio = self.mask_ratio | |
assert 0 <= mask_ratio < 1. | |
x = self.preprocess(img) | |
assert not self.model.visual.input_patchnorm | |
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
# shuffle | |
if use_shuffle: | |
x = x[:, torch.randperm(x.shape[1]), :] | |
# class embeddings and positional embeddings | |
x = torch.cat( | |
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.model.visual.positional_embedding.to(x.dtype) | |
# patch dropout | |
x = self.random_masking(x, mask_ratio, exclude_first_token=True) | |
x = self.model.visual.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.model.visual.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
assert self.model.visual.attn_pool is None | |
pooled, tokens = self.model.visual._global_pool(x) | |
pooled = self.model.visual.ln_post(pooled) | |
if self.model.visual.proj is not None and self.use_proj: | |
pooled = pooled @ self.model.visual.proj | |
if self.only_cls: | |
out = pooled.unsqueeze(1) | |
else: | |
out = torch.cat([pooled.unsqueeze(1), tokens], dim=1) | |
return out | |
def encode(self, text): | |
return self(text) | |
def random_masking(self, x, mask_ratio, exclude_first_token=True): | |
if mask_ratio == 0.: | |
return x | |
N, L, D = x.shape | |
if exclude_first_token: | |
L = L - 1 | |
len_keep = int(L * (1 - mask_ratio)) | |
noise = torch.rand(N, L, device=x.device) | |
# sort noise for each sample | |
ids_shuffle = torch.argsort(noise, dim=1) | |
ids_restore = torch.argsort(ids_shuffle, dim=1) | |
# keep the first subset | |
ids_keep = ids_shuffle[:, :len_keep] | |
if exclude_first_token: | |
ids_keep = ids_keep + 1 | |
ids_keep = torch.cat([torch.zeros(N, 1, device=x.device, dtype=torch.long), ids_keep], dim=1) | |
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) | |
return x_masked | |
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder): | |
""" | |
Uses the OpenCLIP vision transformer encoder for images | |
""" | |
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", | |
freeze=True, layer="pooled", antialias=True): | |
super().__init__() | |
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), | |
pretrained=version, ) | |
del model.transformer | |
self.model = model | |
self.device = device | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "penultimate": | |
raise NotImplementedError() | |
self.layer_idx = 1 | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
def preprocess(self, x): | |
# normalize to [0,1] | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic', align_corners=True, | |
antialias=self.antialias) | |
x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
def forward(self, image, no_dropout=False): | |
## image: b c h w | |
z = self.encode_with_vision_transformer(image) | |
return z | |
def encode_with_vision_transformer(self, x): | |
x = self.preprocess(x) | |
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 | |
if self.model.visual.input_patchnorm: | |
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') | |
x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1]) | |
x = x.permute(0, 2, 4, 1, 3, 5) | |
x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1) | |
x = self.model.visual.patchnorm_pre_ln(x) | |
x = self.model.visual.conv1(x) | |
else: | |
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
# class embeddings and positional embeddings | |
x = torch.cat( | |
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), | |
x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.model.visual.positional_embedding.to(x.dtype) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
x = self.model.visual.patch_dropout(x) | |
x = self.model.visual.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.model.visual.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
return x | |
class FrozenCLIPT5Encoder(AbstractEncoder): | |
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", | |
clip_max_length=77, t5_max_length=77): | |
super().__init__() | |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) | |
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) | |
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " | |
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.") | |
def encode(self, text): | |
return self(text) | |
def forward(self, text): | |
clip_z = self.clip_encoder.encode(text) | |
t5_z = self.t5_encoder.encode(text) | |
return [clip_z, t5_z] |