Spaces:
Sleeping
Sleeping
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +211 -0
- configs/inference_image_512_512.yaml +118 -0
- configs/inference_video_320_512.yaml +122 -0
- eval_data/3d_1.png +0 -0
- eval_data/anime_1.jpg +0 -0
- eval_data/craft_1.jpg +0 -0
- eval_data/craft_2.png +0 -0
- eval_data/digital_art_2.jpeg +0 -0
- eval_data/icon_1.png +0 -0
- eval_data/ink_2.jpeg +0 -0
- eval_data/oil_paint_2.jpg +0 -0
- header.html +36 -0
- lvdm/__pycache__/basics.cpython-39.pyc +0 -0
- lvdm/__pycache__/common.cpython-39.pyc +0 -0
- lvdm/__pycache__/distributions.cpython-39.pyc +0 -0
- lvdm/__pycache__/ema.cpython-39.pyc +0 -0
- lvdm/basics.py +100 -0
- lvdm/common.py +95 -0
- lvdm/distributions.py +95 -0
- lvdm/ema.py +76 -0
- lvdm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
- lvdm/models/__pycache__/ddpm3d.cpython-39.pyc +0 -0
- lvdm/models/__pycache__/ddpm3d_cond.cpython-39.pyc +0 -0
- lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc +0 -0
- lvdm/models/autoencoder.py +219 -0
- lvdm/models/ddpm3d.py +781 -0
- lvdm/models/ddpm3d_cond.py +141 -0
- lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc +0 -0
- lvdm/models/samplers/ddim.py +420 -0
- lvdm/models/utils_diffusion.py +104 -0
- lvdm/modules/__pycache__/attention.cpython-39.pyc +0 -0
- lvdm/modules/attention.py +851 -0
- lvdm/modules/encoders/__pycache__/adapter.cpython-39.pyc +0 -0
- lvdm/modules/encoders/__pycache__/arch_transformer.cpython-39.pyc +0 -0
- lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc +0 -0
- lvdm/modules/encoders/__pycache__/condition2.cpython-39.pyc +0 -0
- lvdm/modules/encoders/__pycache__/ip_resampler.cpython-39.pyc +0 -0
- lvdm/modules/encoders/__pycache__/transformers.cpython-39.pyc +0 -0
- lvdm/modules/encoders/adapter.py +190 -0
- lvdm/modules/encoders/arch_transformer.py +252 -0
- lvdm/modules/encoders/condition.py +461 -0
- lvdm/modules/encoders/ip_resampler.py +136 -0
- lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc +0 -0
- lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc +0 -0
- lvdm/modules/networks/ae_modules.py +845 -0
- lvdm/modules/networks/openaimodel3d.py +641 -0
- lvdm/modules/x_transformer.py +640 -0
- scripts/evaluation/__pycache__/style_inference.cpython-39.pyc +0 -0
- scripts/evaluation/ddp_wrapper.py +48 -0
- scripts/evaluation/funcs.py +237 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
from pytorch_lightning import seed_everything
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from einops import repeat
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from utils.utils import instantiate_from_config
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
|
19 |
+
sys.path.insert(0, "scripts/evaluation")
|
20 |
+
from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler
|
21 |
+
|
22 |
+
|
23 |
+
def load_model_checkpoint(model, ckpt):
|
24 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
25 |
+
if "state_dict" in list(state_dict.keys()):
|
26 |
+
state_dict = state_dict["state_dict"]
|
27 |
+
else:
|
28 |
+
# deepspeed
|
29 |
+
state_dict = OrderedDict()
|
30 |
+
for key in state_dict['module'].keys():
|
31 |
+
state_dict[key[16:]]=state_dict['module'][key]
|
32 |
+
|
33 |
+
model.load_state_dict(state_dict, strict=False)
|
34 |
+
print('>>> model checkpoint loaded.')
|
35 |
+
return model
|
36 |
+
|
37 |
+
|
38 |
+
def download_model():
|
39 |
+
REPO_ID = 'VideoCrafter/Text2Video-512'
|
40 |
+
filename_list = ['model.ckpt']
|
41 |
+
os.makedirs('./checkpoints/videocrafter_t2v_320_512/', exist_ok=True)
|
42 |
+
for filename in filename_list:
|
43 |
+
local_file = os.path.join('./checkpoints/videocrafter_t2v_320_512/', filename)
|
44 |
+
if not os.path.exists(local_file):
|
45 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/videocrafter_t2v_320_512/', force_download=True)
|
46 |
+
|
47 |
+
REPO_ID = 'liuhuohuo/StyleCrafter'
|
48 |
+
filename_list = ['adapter_v1.pth', 'temporal_v1.pth']
|
49 |
+
os.makedirs('./checkpoints/stylecrafter', exist_ok=True)
|
50 |
+
for filename in filename_list:
|
51 |
+
local_file = os.path.join('./checkpoints/stylecrafter', filename)
|
52 |
+
if not os.path.exists(local_file):
|
53 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/stylecrafter', force_download=True)
|
54 |
+
|
55 |
+
|
56 |
+
def infer(image, prompt, infer_type='image', seed=123, style_strength=1.0, steps=50):
|
57 |
+
download_model()
|
58 |
+
ckpt_path = 'checkpoints/videocrafter_t2v_320_512/model.ckpt'
|
59 |
+
adapter_ckpt_path = 'checkpoints/stylecrafter/adapter_v1.pth'
|
60 |
+
temporal_ckpt_path = 'checkpoints/stylecrafter/temporal_v1.pth'
|
61 |
+
if infer_type == 'image':
|
62 |
+
config_file='configs/inference_image_512_512.yaml'
|
63 |
+
h, w = 512 // 8, 512 // 8
|
64 |
+
unconditional_guidance_scale = 7.5
|
65 |
+
unconditional_guidance_scale_style = None
|
66 |
+
else:
|
67 |
+
config_file='configs/inference_video_320_512.yaml'
|
68 |
+
h, w = 320 // 8, 512 // 8
|
69 |
+
unconditional_guidance_scale = 15.0
|
70 |
+
unconditional_guidance_scale_style = 7.5
|
71 |
+
|
72 |
+
config = OmegaConf.load(config_file)
|
73 |
+
model_config = config.pop("model", OmegaConf.create())
|
74 |
+
model_config['params']['adapter_config']['params']['scale'] = style_strength
|
75 |
+
|
76 |
+
|
77 |
+
model = instantiate_from_config(model_config)
|
78 |
+
model = model.cuda()
|
79 |
+
|
80 |
+
# load ckpt
|
81 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
82 |
+
assert os.path.exists(adapter_ckpt_path), "Error: adapter checkpoint Not Found!"
|
83 |
+
assert os.path.exists(temporal_ckpt_path), "Error: temporal checkpoint Not Found!"
|
84 |
+
model = load_model_checkpoint(model, ckpt_path)
|
85 |
+
model.load_pretrained_adapter(adapter_ckpt_path)
|
86 |
+
if infer_type == 'video':
|
87 |
+
model.load_pretrained_temporal(temporal_ckpt_path)
|
88 |
+
model.eval()
|
89 |
+
|
90 |
+
|
91 |
+
seed_everything(seed)
|
92 |
+
|
93 |
+
batch_size=1
|
94 |
+
channels = model.channels
|
95 |
+
frames = model.temporal_length if infer_type == 'video' else 1
|
96 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
97 |
+
|
98 |
+
# text cond
|
99 |
+
cond = model.get_learned_conditioning([prompt])
|
100 |
+
neg_prompt = batch_size * [""]
|
101 |
+
uc = model.get_learned_conditioning(neg_prompt)
|
102 |
+
|
103 |
+
# style cond
|
104 |
+
style_transforms = torchvision.transforms.Compose([
|
105 |
+
torchvision.transforms.Resize(512),
|
106 |
+
torchvision.transforms.CenterCrop(512),
|
107 |
+
torchvision.transforms.ToTensor(),
|
108 |
+
torchvision.transforms.Lambda(lambda x: x * 2. - 1.),
|
109 |
+
])
|
110 |
+
|
111 |
+
style_img = style_transforms(image).unsqueeze(0).cuda()
|
112 |
+
style_cond = model.get_batch_style(style_img)
|
113 |
+
append_to_context = model.adapter(style_cond)
|
114 |
+
|
115 |
+
scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1))
|
116 |
+
|
117 |
+
ddim_sampler = DDIMSampler(model) if infer_type == 'image' else DDIMStyleSampler(model)
|
118 |
+
|
119 |
+
samples, _ = ddim_sampler.sample(S=steps,
|
120 |
+
conditioning=cond,
|
121 |
+
batch_size=noise_shape[0],
|
122 |
+
shape=noise_shape[1:],
|
123 |
+
verbose=False,
|
124 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
125 |
+
unconditional_guidance_scale_style=unconditional_guidance_scale_style,
|
126 |
+
unconditional_conditioning=uc,
|
127 |
+
eta=1.0,
|
128 |
+
temporal_length=noise_shape[2],
|
129 |
+
append_to_context=append_to_context,
|
130 |
+
scale_scalar=scale_scalar
|
131 |
+
)
|
132 |
+
samples = model.decode_first_stage(samples)
|
133 |
+
|
134 |
+
if infer_type == 'image':
|
135 |
+
samples = samples[:, :, 0, :, :].detach().cpu()
|
136 |
+
out_path = "./output.png"
|
137 |
+
torchvision.utils.save_image(samples, out_path, nrow=1, normalize=True, range=(-1, 1))
|
138 |
+
|
139 |
+
elif infer_type == 'video':
|
140 |
+
samples = samples.detach().cpu()
|
141 |
+
out_path = "./output.mp4"
|
142 |
+
video = torch.clamp(samples, -1, 1)
|
143 |
+
video = video.permute(2, 0, 1, 3, 4) # [T, B, C, H, W]
|
144 |
+
frame_grids = [torchvision.utils.make_grid(video[t], nrow=1) for t in range(video.shape[0])]
|
145 |
+
grid = torch.stack(frame_grids, dim=0)
|
146 |
+
grid = (grid + 1.0) / 2.0
|
147 |
+
grid = (grid * 255).permute(0, 2, 3, 1).numpy().astype('uint8')
|
148 |
+
torchvision.io.write_video(out_path, grid, fps=8, video_codec='h264', options={'crf': '10'})
|
149 |
+
|
150 |
+
|
151 |
+
return out_path
|
152 |
+
|
153 |
+
|
154 |
+
def read_content(file_path: str) -> str:
|
155 |
+
"""read the content of target file
|
156 |
+
"""
|
157 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
158 |
+
content = f.read()
|
159 |
+
|
160 |
+
return content
|
161 |
+
|
162 |
+
|
163 |
+
demo_exaples = [
|
164 |
+
['eval_data/3d_1.png', 'A bouquet of flowers in a vase.', 'image', 123, 1.0, 50],
|
165 |
+
['eval_data/craft_1.png', 'A modern cityscape with towering skyscrapers.', 'image', 124, 1.0, 50],
|
166 |
+
['eval_data/digital_art_2.jpeg', 'A lighthouse standing tall on a rocky coast.', 'image', 123, 1.0, 50],
|
167 |
+
['eval_data/oil_paint_2.jpg', 'A man playing the guitar on a city street.', 'image', 123, 1.0, 50],
|
168 |
+
['eval_data/craft_2.jpg', 'City street at night with bright lights and busy traffic.', 'video', 123, 1.0, 50],
|
169 |
+
['eval_data/anime_1.jpg', 'A field of sunflowers on a sunny day.', 'video', 123, 1.0, 50],
|
170 |
+
['eval_data/ink_2.jpeg', 'A knight riding a horse through a field.', 'video', 123, 1.0, 50],
|
171 |
+
['eval_data/oil_paint_2.jpg', 'A street performer playing the guitar.', 'video', 121, 1.0, 50],
|
172 |
+
['eval_data/icon_1.png', 'A campfire surrounded by tents.', 'video', 123, 1.0, 50],
|
173 |
+
]
|
174 |
+
css = """
|
175 |
+
#input_img {max-height: 512px}
|
176 |
+
#output_vid {max-width: 512px;}
|
177 |
+
"""
|
178 |
+
|
179 |
+
with gr.Blocks(analytics_enabled=False, css=css) as demo_iface:
|
180 |
+
gr.HTML(read_content("header.html"))
|
181 |
+
|
182 |
+
with gr.Tab(label='Stylized Generation'):
|
183 |
+
with gr.Column():
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column():
|
186 |
+
with gr.Row():
|
187 |
+
input_style_ref = gr.Image(label="Style Reference",elem_id="input_img")
|
188 |
+
with gr.Row():
|
189 |
+
input_prompt = gr.Text(label='Prompts')
|
190 |
+
with gr.Row():
|
191 |
+
input_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
192 |
+
input_style_strength = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, label='Style Strength', value=1.0)
|
193 |
+
with gr.Row():
|
194 |
+
input_step = gr.Slider(minimum=1, maximum=75, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
195 |
+
input_type = gr.Radio(choices=["image", "video"], label="Generation Type", value="image")
|
196 |
+
input_end_btn = gr.Button("Generate")
|
197 |
+
# with gr.Tab(label='Result'):
|
198 |
+
with gr.Row():
|
199 |
+
output_result = gr.Video(label="Generated Results",elem_id="output_vid",autoplay=True,show_share_button=True)
|
200 |
+
|
201 |
+
gr.Examples(examples=demo_exaples,
|
202 |
+
inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
|
203 |
+
outputs=[output_result],
|
204 |
+
fn = infer,
|
205 |
+
)
|
206 |
+
input_end_btn.click(inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
|
207 |
+
outputs=[output_result],
|
208 |
+
fn = infer
|
209 |
+
)
|
210 |
+
|
211 |
+
demo_iface.queue(max_size=12).launch(show_api=True)
|
configs/inference_image_512_512.yaml
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: lvdm.models.ddpm3d_cond.T2IAdapterStyleAS
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.012
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: video
|
10 |
+
cond_stage_key: caption
|
11 |
+
cond_stage_trainable: false
|
12 |
+
conditioning_key: crossattn
|
13 |
+
image_size: [64, 64]
|
14 |
+
channels: 4
|
15 |
+
#monitor: val/loss_simple
|
16 |
+
scale_by_std: false
|
17 |
+
scale_factor: 0.18215
|
18 |
+
# training related
|
19 |
+
use_ema: false
|
20 |
+
uncond_prob: 0.0
|
21 |
+
uncond_type: 'empty_seq'
|
22 |
+
scheduler_config:
|
23 |
+
target: utils.lr_scheduler.LambdaLRScheduler
|
24 |
+
interval: 'step'
|
25 |
+
frequency: 100
|
26 |
+
params:
|
27 |
+
start_step: 0
|
28 |
+
final_decay_ratio: 0.01
|
29 |
+
decay_steps: 20000
|
30 |
+
|
31 |
+
unet_config:
|
32 |
+
target: lvdm.modules.networks.openaimodel3d.UNet2DModel
|
33 |
+
params:
|
34 |
+
in_channels: 4
|
35 |
+
out_channels: 4
|
36 |
+
model_channels: 320
|
37 |
+
attention_resolutions: [4, 2, 1]
|
38 |
+
num_res_blocks: 2
|
39 |
+
channel_mult: [1, 2, 4, 4]
|
40 |
+
#num_heads: 8
|
41 |
+
num_head_channels: 64 # need to fix for flash-attn
|
42 |
+
transformer_depth: 1
|
43 |
+
context_dim: 1024
|
44 |
+
use_linear: true
|
45 |
+
use_checkpoint: true
|
46 |
+
temporal_conv: false
|
47 |
+
temporal_attention: true
|
48 |
+
temporal_selfatt_only: true
|
49 |
+
use_relative_position: true
|
50 |
+
use_causal_attention: false
|
51 |
+
temporal_length: 16
|
52 |
+
addition_attention: true
|
53 |
+
|
54 |
+
first_stage_config:
|
55 |
+
target: lvdm.models.autoencoder.AutoencoderKL
|
56 |
+
params:
|
57 |
+
embed_dim: 4
|
58 |
+
monitor: val/rec_loss
|
59 |
+
ddconfig:
|
60 |
+
double_z: true
|
61 |
+
z_channels: 4
|
62 |
+
resolution: 256
|
63 |
+
in_channels: 3
|
64 |
+
out_ch: 3
|
65 |
+
ch: 128
|
66 |
+
ch_mult: [1, 2, 4, 4]
|
67 |
+
num_res_blocks: 2
|
68 |
+
attn_resolutions: []
|
69 |
+
dropout: 0.0
|
70 |
+
lossconfig:
|
71 |
+
target: torch.nn.Identity
|
72 |
+
|
73 |
+
cond_stage_config:
|
74 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
75 |
+
params:
|
76 |
+
freeze: true
|
77 |
+
layer: "penultimate"
|
78 |
+
# version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin
|
79 |
+
|
80 |
+
style_stage_config:
|
81 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedder
|
82 |
+
params:
|
83 |
+
# version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin
|
84 |
+
freeze: true
|
85 |
+
only_cls: false
|
86 |
+
use_proj: false
|
87 |
+
use_shuffle: false
|
88 |
+
mask_ratio: 0.0
|
89 |
+
|
90 |
+
adapter_config:
|
91 |
+
target: lvdm.modules.encoders.adapter.StyleAdapterDualAttnAS
|
92 |
+
cond_name: style
|
93 |
+
trainable: true
|
94 |
+
params:
|
95 |
+
scale: 1.0
|
96 |
+
use_norm: true
|
97 |
+
image_context_config:
|
98 |
+
target: lvdm.modules.encoders.adapter.StyleTransformer
|
99 |
+
params:
|
100 |
+
in_dim: 1280
|
101 |
+
out_dim: 1024
|
102 |
+
num_heads: 8
|
103 |
+
num_tokens: 8
|
104 |
+
n_layers: 3
|
105 |
+
scale_predictor_config:
|
106 |
+
target: lvdm.modules.encoders.adapter.ScaleEncoder
|
107 |
+
params:
|
108 |
+
in_dim: 1024
|
109 |
+
out_dim: 1
|
110 |
+
num_heads: 8
|
111 |
+
num_tokens: 16
|
112 |
+
n_layers: 2
|
113 |
+
# target: lvdm.modules.encoders.adapter.ImageContext
|
114 |
+
# params:
|
115 |
+
# width: 1024
|
116 |
+
# context_dim: 1024
|
117 |
+
# token_num: 4
|
118 |
+
|
configs/inference_video_320_512.yaml
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: lvdm.models.ddpm3d_cond.T2VFintoneStyleAS
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.012
|
6 |
+
num_timesteps_cond: 1
|
7 |
+
log_every_t: 200
|
8 |
+
timesteps: 1000
|
9 |
+
first_stage_key: video
|
10 |
+
cond_stage_key: caption
|
11 |
+
cond_stage_trainable: false
|
12 |
+
conditioning_key: crossattn
|
13 |
+
image_size: [64, 64]
|
14 |
+
channels: 4
|
15 |
+
#monitor: val/loss_simple
|
16 |
+
scale_by_std: false
|
17 |
+
scale_factor: 0.18215
|
18 |
+
# training related
|
19 |
+
use_ema: false
|
20 |
+
uncond_prob: 0.0
|
21 |
+
uncond_type: 'empty_seq'
|
22 |
+
|
23 |
+
|
24 |
+
scheduler_config:
|
25 |
+
target: utils.lr_scheduler.LambdaLRScheduler
|
26 |
+
interval: 'step'
|
27 |
+
frequency: 100
|
28 |
+
params:
|
29 |
+
start_step: 0
|
30 |
+
final_decay_ratio: 0.01
|
31 |
+
decay_steps: 20000
|
32 |
+
|
33 |
+
# train_strategy: 'video_only'
|
34 |
+
|
35 |
+
unet_config:
|
36 |
+
target: lvdm.modules.networks.openaimodel3d.UNetModel
|
37 |
+
params:
|
38 |
+
in_channels: 4
|
39 |
+
out_channels: 4
|
40 |
+
model_channels: 320
|
41 |
+
attention_resolutions: [4, 2, 1]
|
42 |
+
num_res_blocks: 2
|
43 |
+
channel_mult: [1, 2, 4, 4]
|
44 |
+
#num_heads: 8
|
45 |
+
num_head_channels: 64 # need to fix for flash-attn
|
46 |
+
transformer_depth: 1
|
47 |
+
context_dim: 1024
|
48 |
+
use_linear: true
|
49 |
+
use_checkpoint: true
|
50 |
+
temporal_conv: false
|
51 |
+
temporal_attention: true
|
52 |
+
temporal_selfatt_only: true
|
53 |
+
use_relative_position: true
|
54 |
+
use_causal_attention: false
|
55 |
+
temporal_length: 16
|
56 |
+
addition_attention: true
|
57 |
+
|
58 |
+
first_stage_config:
|
59 |
+
target: lvdm.models.autoencoder.AutoencoderKL
|
60 |
+
params:
|
61 |
+
embed_dim: 4
|
62 |
+
monitor: val/rec_loss
|
63 |
+
ddconfig:
|
64 |
+
double_z: true
|
65 |
+
z_channels: 4
|
66 |
+
resolution: 256
|
67 |
+
in_channels: 3
|
68 |
+
out_ch: 3
|
69 |
+
ch: 128
|
70 |
+
ch_mult: [1, 2, 4, 4]
|
71 |
+
num_res_blocks: 2
|
72 |
+
attn_resolutions: []
|
73 |
+
dropout: 0.0
|
74 |
+
lossconfig:
|
75 |
+
target: torch.nn.Identity
|
76 |
+
|
77 |
+
cond_stage_config:
|
78 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
79 |
+
params:
|
80 |
+
version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin
|
81 |
+
freeze: true
|
82 |
+
layer: "penultimate"
|
83 |
+
|
84 |
+
style_stage_config:
|
85 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedder
|
86 |
+
params:
|
87 |
+
version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin
|
88 |
+
freeze: true
|
89 |
+
only_cls: false
|
90 |
+
use_proj: false
|
91 |
+
use_shuffle: false
|
92 |
+
mask_ratio: 0.0
|
93 |
+
|
94 |
+
adapter_config:
|
95 |
+
target: lvdm.modules.encoders.adapter.StyleAdapterDualAttnAS
|
96 |
+
cond_name: style
|
97 |
+
trainable: true
|
98 |
+
params:
|
99 |
+
scale: 1.0
|
100 |
+
use_norm: true
|
101 |
+
image_context_config:
|
102 |
+
target: lvdm.modules.encoders.adapter.StyleTransformer
|
103 |
+
params:
|
104 |
+
in_dim: 1280
|
105 |
+
out_dim: 1024
|
106 |
+
num_heads: 8
|
107 |
+
num_tokens: 8
|
108 |
+
n_layers: 3
|
109 |
+
scale_predictor_config:
|
110 |
+
target: lvdm.modules.encoders.adapter.ScaleEncoder
|
111 |
+
params:
|
112 |
+
in_dim: 1024
|
113 |
+
out_dim: 1
|
114 |
+
num_heads: 8
|
115 |
+
num_tokens: 16
|
116 |
+
n_layers: 2
|
117 |
+
# target: lvdm.modules.encoders.adapter.ImageContext
|
118 |
+
# params:
|
119 |
+
# width: 1024
|
120 |
+
# context_dim: 1024
|
121 |
+
# token_num: 4
|
122 |
+
|
eval_data/3d_1.png
ADDED
eval_data/anime_1.jpg
ADDED
eval_data/craft_1.jpg
ADDED
eval_data/craft_2.png
ADDED
eval_data/digital_art_2.jpeg
ADDED
eval_data/icon_1.png
ADDED
eval_data/ink_2.jpeg
ADDED
eval_data/oil_paint_2.jpg
ADDED
header.html
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<style>
|
2 |
+
.button-container {
|
3 |
+
display: flex;
|
4 |
+
justify-content: center;
|
5 |
+
align-items: center;
|
6 |
+
gap: 1rem;
|
7 |
+
}
|
8 |
+
</style>
|
9 |
+
|
10 |
+
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
|
11 |
+
<div>
|
12 |
+
<h1>
|
13 |
+
StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
|
14 |
+
</h1>
|
15 |
+
</div>
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
<div style="text-align: center; max-width: 600px; margin: 0 auto;">
|
20 |
+
<p style="align-items: center; margin-bottom: 7px;">
|
21 |
+
This is a online demo for StyleCrafter, a model that can generate images/videos with your favorite style.
|
22 |
+
</p>
|
23 |
+
<p style="align-items: center; margin-bottom: 7px;">
|
24 |
+
You can upload your own style image and text description, and StyleCrafter will intelligently combine the style elements from the image and the text to create a unique and visually appealing output.
|
25 |
+
</p>
|
26 |
+
</div>
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
<div class="column has-text-centered button-container">
|
31 |
+
<a href='https://arxiv.org/abs/2312.00330'><img src='https://img.shields.io/badge/arXiv-2312.00330-b31b1b.svg'></a>
|
32 |
+
<a href='https://gongyeliu.github.io/StyleCrafter.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
33 |
+
<a href='https://github.com/GongyeLiu/StyleCrafter'><img src='https://img.shields.io/badge/GitHub-Code-181717?logo=github&labelCase=asis'></a>
|
34 |
+
</div>
|
35 |
+
|
36 |
+
</div>
|
lvdm/__pycache__/basics.cpython-39.pyc
ADDED
Binary file (3.25 kB). View file
|
|
lvdm/__pycache__/common.cpython-39.pyc
ADDED
Binary file (4.51 kB). View file
|
|
lvdm/__pycache__/distributions.cpython-39.pyc
ADDED
Binary file (3.81 kB). View file
|
|
lvdm/__pycache__/ema.cpython-39.pyc
ADDED
Binary file (2.99 kB). View file
|
|
lvdm/basics.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
import torch.nn as nn
|
11 |
+
from utils.utils import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
def zero_module(module):
|
20 |
+
"""
|
21 |
+
Zero out the parameters of a module and return it.
|
22 |
+
"""
|
23 |
+
for p in module.parameters():
|
24 |
+
p.detach().zero_()
|
25 |
+
return module
|
26 |
+
|
27 |
+
def scale_module(module, scale):
|
28 |
+
"""
|
29 |
+
Scale the parameters of a module and return it.
|
30 |
+
"""
|
31 |
+
for p in module.parameters():
|
32 |
+
p.detach().mul_(scale)
|
33 |
+
return module
|
34 |
+
|
35 |
+
|
36 |
+
def conv_nd(dims, *args, **kwargs):
|
37 |
+
"""
|
38 |
+
Create a 1D, 2D, or 3D convolution module.
|
39 |
+
"""
|
40 |
+
if dims == 1:
|
41 |
+
return nn.Conv1d(*args, **kwargs)
|
42 |
+
elif dims == 2:
|
43 |
+
return nn.Conv2d(*args, **kwargs)
|
44 |
+
elif dims == 3:
|
45 |
+
return nn.Conv3d(*args, **kwargs)
|
46 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
47 |
+
|
48 |
+
|
49 |
+
def linear(*args, **kwargs):
|
50 |
+
"""
|
51 |
+
Create a linear module.
|
52 |
+
"""
|
53 |
+
return nn.Linear(*args, **kwargs)
|
54 |
+
|
55 |
+
|
56 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
57 |
+
"""
|
58 |
+
Create a 1D, 2D, or 3D average pooling module.
|
59 |
+
"""
|
60 |
+
if dims == 1:
|
61 |
+
return nn.AvgPool1d(*args, **kwargs)
|
62 |
+
elif dims == 2:
|
63 |
+
return nn.AvgPool2d(*args, **kwargs)
|
64 |
+
elif dims == 3:
|
65 |
+
return nn.AvgPool3d(*args, **kwargs)
|
66 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
67 |
+
|
68 |
+
|
69 |
+
def nonlinearity(type='silu'):
|
70 |
+
if type == 'silu':
|
71 |
+
return nn.SiLU()
|
72 |
+
elif type == 'leaky_relu':
|
73 |
+
return nn.LeakyReLU()
|
74 |
+
|
75 |
+
|
76 |
+
class GroupNormSpecific(nn.GroupNorm):
|
77 |
+
def forward(self, x):
|
78 |
+
return super().forward(x.float()).type(x.dtype)
|
79 |
+
|
80 |
+
|
81 |
+
def normalization(channels, num_groups=32):
|
82 |
+
"""
|
83 |
+
Make a standard normalization layer.
|
84 |
+
:param channels: number of input channels.
|
85 |
+
:return: an nn.Module for normalization.
|
86 |
+
"""
|
87 |
+
return GroupNormSpecific(num_groups, channels)
|
88 |
+
|
89 |
+
|
90 |
+
class HybridConditioner(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
93 |
+
super().__init__()
|
94 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
95 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
96 |
+
|
97 |
+
def forward(self, c_concat, c_crossattn):
|
98 |
+
c_concat = self.concat_conditioner(c_concat)
|
99 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
100 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
lvdm/common.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def gather_data(data, return_np=True):
|
9 |
+
''' gather data from multiple processes to one list '''
|
10 |
+
data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
|
11 |
+
dist.all_gather(data_list, data) # gather not supported with NCCL
|
12 |
+
if return_np:
|
13 |
+
data_list = [data.cpu().numpy() for data in data_list]
|
14 |
+
return data_list
|
15 |
+
|
16 |
+
def autocast(f):
|
17 |
+
def do_autocast(*args, **kwargs):
|
18 |
+
with torch.cuda.amp.autocast(enabled=True,
|
19 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
20 |
+
cache_enabled=torch.is_autocast_cache_enabled()):
|
21 |
+
return f(*args, **kwargs)
|
22 |
+
return do_autocast
|
23 |
+
|
24 |
+
|
25 |
+
def extract_into_tensor(a, t, x_shape):
|
26 |
+
b, *_ = t.shape
|
27 |
+
out = a.gather(-1, t)
|
28 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
29 |
+
|
30 |
+
|
31 |
+
def noise_like(shape, device, repeat=False):
|
32 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
33 |
+
noise = lambda: torch.randn(shape, device=device)
|
34 |
+
return repeat_noise() if repeat else noise()
|
35 |
+
|
36 |
+
|
37 |
+
def default(val, d):
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d() if isfunction(d) else d
|
41 |
+
|
42 |
+
def exists(val):
|
43 |
+
return val is not None
|
44 |
+
|
45 |
+
def identity(*args, **kwargs):
|
46 |
+
return nn.Identity()
|
47 |
+
|
48 |
+
def uniq(arr):
|
49 |
+
return{el: True for el in arr}.keys()
|
50 |
+
|
51 |
+
def mean_flat(tensor):
|
52 |
+
"""
|
53 |
+
Take the mean over all non-batch dimensions.
|
54 |
+
"""
|
55 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
56 |
+
|
57 |
+
def ismap(x):
|
58 |
+
if not isinstance(x, torch.Tensor):
|
59 |
+
return False
|
60 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
61 |
+
|
62 |
+
def isimage(x):
|
63 |
+
if not isinstance(x,torch.Tensor):
|
64 |
+
return False
|
65 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
66 |
+
|
67 |
+
def max_neg_value(t):
|
68 |
+
return -torch.finfo(t.dtype).max
|
69 |
+
|
70 |
+
def shape_to_str(x):
|
71 |
+
shape_str = "x".join([str(x) for x in x.shape])
|
72 |
+
return shape_str
|
73 |
+
|
74 |
+
def init_(tensor):
|
75 |
+
dim = tensor.shape[-1]
|
76 |
+
std = 1 / math.sqrt(dim)
|
77 |
+
tensor.uniform_(-std, std)
|
78 |
+
return tensor
|
79 |
+
|
80 |
+
ckpt = torch.utils.checkpoint.checkpoint
|
81 |
+
def checkpoint(func, inputs, params, flag):
|
82 |
+
"""
|
83 |
+
Evaluate a function without caching intermediate activations, allowing for
|
84 |
+
reduced memory at the expense of extra compute in the backward pass.
|
85 |
+
:param func: the function to evaluate.
|
86 |
+
:param inputs: the argument sequence to pass to `func`.
|
87 |
+
:param params: a sequence of parameters `func` depends on but does not
|
88 |
+
explicitly take as arguments.
|
89 |
+
:param flag: if False, disable gradient checkpointing.
|
90 |
+
"""
|
91 |
+
if flag:
|
92 |
+
return ckpt(func, *inputs)
|
93 |
+
else:
|
94 |
+
return func(*inputs)
|
95 |
+
|
lvdm/distributions.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self, noise=None):
|
36 |
+
if noise is None:
|
37 |
+
noise = torch.randn(self.mean.shape)
|
38 |
+
|
39 |
+
x = self.mean + self.std * noise.to(device=self.parameters.device)
|
40 |
+
return x
|
41 |
+
|
42 |
+
def kl(self, other=None):
|
43 |
+
if self.deterministic:
|
44 |
+
return torch.Tensor([0.])
|
45 |
+
else:
|
46 |
+
if other is None:
|
47 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
48 |
+
+ self.var - 1.0 - self.logvar,
|
49 |
+
dim=[1, 2, 3])
|
50 |
+
else:
|
51 |
+
return 0.5 * torch.sum(
|
52 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
53 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
54 |
+
dim=[1, 2, 3])
|
55 |
+
|
56 |
+
def nll(self, sample, dims=[1,2,3]):
|
57 |
+
if self.deterministic:
|
58 |
+
return torch.Tensor([0.])
|
59 |
+
logtwopi = np.log(2.0 * np.pi)
|
60 |
+
return 0.5 * torch.sum(
|
61 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
62 |
+
dim=dims)
|
63 |
+
|
64 |
+
def mode(self):
|
65 |
+
return self.mean
|
66 |
+
|
67 |
+
|
68 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
69 |
+
"""
|
70 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
71 |
+
Compute the KL divergence between two gaussians.
|
72 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
73 |
+
scalars, among other use cases.
|
74 |
+
"""
|
75 |
+
tensor = None
|
76 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
77 |
+
if isinstance(obj, torch.Tensor):
|
78 |
+
tensor = obj
|
79 |
+
break
|
80 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
81 |
+
|
82 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
83 |
+
# Tensors, but it does not work for torch.exp().
|
84 |
+
logvar1, logvar2 = [
|
85 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
86 |
+
for x in (logvar1, logvar2)
|
87 |
+
]
|
88 |
+
|
89 |
+
return 0.5 * (
|
90 |
+
-1.0
|
91 |
+
+ logvar2
|
92 |
+
- logvar1
|
93 |
+
+ torch.exp(logvar1 - logvar2)
|
94 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
95 |
+
)
|
lvdm/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
lvdm/models/__pycache__/autoencoder.cpython-39.pyc
ADDED
Binary file (7.22 kB). View file
|
|
lvdm/models/__pycache__/ddpm3d.cpython-39.pyc
ADDED
Binary file (23.4 kB). View file
|
|
lvdm/models/__pycache__/ddpm3d_cond.cpython-39.pyc
ADDED
Binary file (5.79 kB). View file
|
|
lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc
ADDED
Binary file (3.9 kB). View file
|
|
lvdm/models/autoencoder.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from contextlib import contextmanager
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import pytorch_lightning as pl
|
8 |
+
from lvdm.modules.networks.ae_modules import Encoder, Decoder
|
9 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
10 |
+
from utils.utils import instantiate_from_config
|
11 |
+
|
12 |
+
|
13 |
+
class AutoencoderKL(pl.LightningModule):
|
14 |
+
def __init__(self,
|
15 |
+
ddconfig,
|
16 |
+
lossconfig,
|
17 |
+
embed_dim,
|
18 |
+
ckpt_path=None,
|
19 |
+
ignore_keys=[],
|
20 |
+
image_key="image",
|
21 |
+
colorize_nlabels=None,
|
22 |
+
monitor=None,
|
23 |
+
test=False,
|
24 |
+
logdir=None,
|
25 |
+
input_dim=4,
|
26 |
+
test_args=None,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
self.image_key = image_key
|
30 |
+
self.encoder = Encoder(**ddconfig)
|
31 |
+
self.decoder = Decoder(**ddconfig)
|
32 |
+
self.loss = instantiate_from_config(lossconfig)
|
33 |
+
assert ddconfig["double_z"]
|
34 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
35 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
36 |
+
self.embed_dim = embed_dim
|
37 |
+
self.input_dim = input_dim
|
38 |
+
self.test = test
|
39 |
+
self.test_args = test_args
|
40 |
+
self.logdir = logdir
|
41 |
+
if colorize_nlabels is not None:
|
42 |
+
assert type(colorize_nlabels)==int
|
43 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
44 |
+
if monitor is not None:
|
45 |
+
self.monitor = monitor
|
46 |
+
if ckpt_path is not None:
|
47 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
48 |
+
if self.test:
|
49 |
+
self.init_test()
|
50 |
+
|
51 |
+
def init_test(self,):
|
52 |
+
self.test = True
|
53 |
+
save_dir = os.path.join(self.logdir, "test")
|
54 |
+
if 'ckpt' in self.test_args:
|
55 |
+
ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
|
56 |
+
self.root = os.path.join(save_dir, ckpt_name)
|
57 |
+
else:
|
58 |
+
self.root = save_dir
|
59 |
+
if 'test_subdir' in self.test_args:
|
60 |
+
self.root = os.path.join(save_dir, self.test_args.test_subdir)
|
61 |
+
|
62 |
+
self.root_zs = os.path.join(self.root, "zs")
|
63 |
+
self.root_dec = os.path.join(self.root, "reconstructions")
|
64 |
+
self.root_inputs = os.path.join(self.root, "inputs")
|
65 |
+
os.makedirs(self.root, exist_ok=True)
|
66 |
+
|
67 |
+
if self.test_args.save_z:
|
68 |
+
os.makedirs(self.root_zs, exist_ok=True)
|
69 |
+
if self.test_args.save_reconstruction:
|
70 |
+
os.makedirs(self.root_dec, exist_ok=True)
|
71 |
+
if self.test_args.save_input:
|
72 |
+
os.makedirs(self.root_inputs, exist_ok=True)
|
73 |
+
assert(self.test_args is not None)
|
74 |
+
self.test_maximum = getattr(self.test_args, 'test_maximum', None)
|
75 |
+
self.count = 0
|
76 |
+
self.eval_metrics = {}
|
77 |
+
self.decodes = []
|
78 |
+
self.save_decode_samples = 2048
|
79 |
+
|
80 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
81 |
+
sd = torch.load(path, map_location="cpu")
|
82 |
+
try:
|
83 |
+
self._cur_epoch = sd['epoch']
|
84 |
+
sd = sd["state_dict"]
|
85 |
+
except:
|
86 |
+
self._cur_epoch = 'null'
|
87 |
+
keys = list(sd.keys())
|
88 |
+
for k in keys:
|
89 |
+
for ik in ignore_keys:
|
90 |
+
if k.startswith(ik):
|
91 |
+
print("Deleting key {} from state_dict.".format(k))
|
92 |
+
del sd[k]
|
93 |
+
self.load_state_dict(sd, strict=False)
|
94 |
+
# self.load_state_dict(sd, strict=True)
|
95 |
+
print(f"Restored from {path}")
|
96 |
+
|
97 |
+
def encode(self, x, **kwargs):
|
98 |
+
|
99 |
+
h = self.encoder(x)
|
100 |
+
moments = self.quant_conv(h)
|
101 |
+
posterior = DiagonalGaussianDistribution(moments)
|
102 |
+
return posterior
|
103 |
+
|
104 |
+
def decode(self, z, **kwargs):
|
105 |
+
z = self.post_quant_conv(z)
|
106 |
+
dec = self.decoder(z)
|
107 |
+
return dec
|
108 |
+
|
109 |
+
def forward(self, input, sample_posterior=True):
|
110 |
+
posterior = self.encode(input)
|
111 |
+
if sample_posterior:
|
112 |
+
z = posterior.sample()
|
113 |
+
else:
|
114 |
+
z = posterior.mode()
|
115 |
+
dec = self.decode(z)
|
116 |
+
return dec, posterior
|
117 |
+
|
118 |
+
def get_input(self, batch, k):
|
119 |
+
x = batch[k]
|
120 |
+
if x.dim() == 5 and self.input_dim == 4:
|
121 |
+
b,c,t,h,w = x.shape
|
122 |
+
self.b = b
|
123 |
+
self.t = t
|
124 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
125 |
+
|
126 |
+
return x
|
127 |
+
|
128 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
129 |
+
inputs = self.get_input(batch, self.image_key)
|
130 |
+
reconstructions, posterior = self(inputs)
|
131 |
+
|
132 |
+
if optimizer_idx == 0:
|
133 |
+
# train encoder+decoder+logvar
|
134 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
135 |
+
last_layer=self.get_last_layer(), split="train")
|
136 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
137 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
138 |
+
return aeloss
|
139 |
+
|
140 |
+
if optimizer_idx == 1:
|
141 |
+
# train the discriminator
|
142 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
143 |
+
last_layer=self.get_last_layer(), split="train")
|
144 |
+
|
145 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
146 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
147 |
+
return discloss
|
148 |
+
|
149 |
+
def validation_step(self, batch, batch_idx):
|
150 |
+
inputs = self.get_input(batch, self.image_key)
|
151 |
+
reconstructions, posterior = self(inputs)
|
152 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
153 |
+
last_layer=self.get_last_layer(), split="val")
|
154 |
+
|
155 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
156 |
+
last_layer=self.get_last_layer(), split="val")
|
157 |
+
|
158 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
159 |
+
self.log_dict(log_dict_ae)
|
160 |
+
self.log_dict(log_dict_disc)
|
161 |
+
return self.log_dict
|
162 |
+
|
163 |
+
def configure_optimizers(self):
|
164 |
+
lr = self.learning_rate
|
165 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
166 |
+
list(self.decoder.parameters())+
|
167 |
+
list(self.quant_conv.parameters())+
|
168 |
+
list(self.post_quant_conv.parameters()),
|
169 |
+
lr=lr, betas=(0.5, 0.9))
|
170 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
171 |
+
lr=lr, betas=(0.5, 0.9))
|
172 |
+
return [opt_ae, opt_disc], []
|
173 |
+
|
174 |
+
def get_last_layer(self):
|
175 |
+
return self.decoder.conv_out.weight
|
176 |
+
|
177 |
+
@torch.no_grad()
|
178 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
179 |
+
log = dict()
|
180 |
+
x = self.get_input(batch, self.image_key)
|
181 |
+
x = x.to(self.device)
|
182 |
+
if not only_inputs:
|
183 |
+
xrec, posterior = self(x)
|
184 |
+
if x.shape[1] > 3:
|
185 |
+
# colorize with random projection
|
186 |
+
assert xrec.shape[1] > 3
|
187 |
+
x = self.to_rgb(x)
|
188 |
+
xrec = self.to_rgb(xrec)
|
189 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
190 |
+
log["reconstructions"] = xrec
|
191 |
+
log["inputs"] = x
|
192 |
+
return log
|
193 |
+
|
194 |
+
def to_rgb(self, x):
|
195 |
+
assert self.image_key == "segmentation"
|
196 |
+
if not hasattr(self, "colorize"):
|
197 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
198 |
+
x = F.conv2d(x, weight=self.colorize)
|
199 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
200 |
+
return x
|
201 |
+
|
202 |
+
class IdentityFirstStage(torch.nn.Module):
|
203 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
204 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
205 |
+
super().__init__()
|
206 |
+
|
207 |
+
def encode(self, x, *args, **kwargs):
|
208 |
+
return x
|
209 |
+
|
210 |
+
def decode(self, x, *args, **kwargs):
|
211 |
+
return x
|
212 |
+
|
213 |
+
def quantize(self, x, *args, **kwargs):
|
214 |
+
if self.vq_interface:
|
215 |
+
return x, None, [None, None, None]
|
216 |
+
return x
|
217 |
+
|
218 |
+
def forward(self, x, *args, **kwargs):
|
219 |
+
return x
|
lvdm/models/ddpm3d.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
4 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
from contextlib import contextmanager
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
import logging
|
15 |
+
mainlogger = logging.getLogger('mainlogger')
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from torchvision.utils import make_grid
|
19 |
+
import pytorch_lightning as pl
|
20 |
+
from utils.utils import instantiate_from_config
|
21 |
+
from lvdm.ema import LitEma
|
22 |
+
from lvdm.distributions import DiagonalGaussianDistribution
|
23 |
+
from lvdm.models.utils_diffusion import make_beta_schedule
|
24 |
+
from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler
|
25 |
+
from lvdm.basics import disabled_train
|
26 |
+
from lvdm.common import (
|
27 |
+
extract_into_tensor,
|
28 |
+
noise_like,
|
29 |
+
exists,
|
30 |
+
default
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
35 |
+
'crossattn': 'c_crossattn',
|
36 |
+
'adm': 'y'}
|
37 |
+
|
38 |
+
class DDPM(pl.LightningModule):
|
39 |
+
# classic DDPM with Gaussian diffusion, in image space
|
40 |
+
def __init__(self,
|
41 |
+
unet_config,
|
42 |
+
timesteps=1000,
|
43 |
+
beta_schedule="linear",
|
44 |
+
loss_type="l2",
|
45 |
+
ckpt_path=None,
|
46 |
+
ignore_keys=[],
|
47 |
+
load_only_unet=False,
|
48 |
+
monitor=None,
|
49 |
+
use_ema=True,
|
50 |
+
first_stage_key="image",
|
51 |
+
image_size=256,
|
52 |
+
channels=3,
|
53 |
+
log_every_t=100,
|
54 |
+
clip_denoised=True,
|
55 |
+
linear_start=1e-4,
|
56 |
+
linear_end=2e-2,
|
57 |
+
cosine_s=8e-3,
|
58 |
+
given_betas=None,
|
59 |
+
original_elbo_weight=0.,
|
60 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
61 |
+
l_simple_weight=1.,
|
62 |
+
conditioning_key=None,
|
63 |
+
parameterization="eps", # all assuming fixed variance schedules
|
64 |
+
scheduler_config=None,
|
65 |
+
use_positional_encodings=False,
|
66 |
+
learn_logvar=False,
|
67 |
+
logvar_init=0.
|
68 |
+
):
|
69 |
+
super().__init__()
|
70 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
71 |
+
self.parameterization = parameterization
|
72 |
+
mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
73 |
+
self.cond_stage_model = None
|
74 |
+
self.clip_denoised = clip_denoised
|
75 |
+
self.log_every_t = log_every_t
|
76 |
+
self.first_stage_key = first_stage_key
|
77 |
+
self.channels = channels
|
78 |
+
self.temporal_length = unet_config.params.temporal_length
|
79 |
+
self.image_size = image_size
|
80 |
+
if isinstance(self.image_size, int):
|
81 |
+
self.image_size = [self.image_size, self.image_size]
|
82 |
+
self.use_positional_encodings = use_positional_encodings
|
83 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
84 |
+
self.use_ema = use_ema
|
85 |
+
if self.use_ema:
|
86 |
+
self.model_ema = LitEma(self.model)
|
87 |
+
mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
88 |
+
|
89 |
+
self.use_scheduler = scheduler_config is not None
|
90 |
+
if self.use_scheduler:
|
91 |
+
self.scheduler_config = scheduler_config
|
92 |
+
|
93 |
+
self.v_posterior = v_posterior
|
94 |
+
self.original_elbo_weight = original_elbo_weight
|
95 |
+
self.l_simple_weight = l_simple_weight
|
96 |
+
|
97 |
+
if monitor is not None:
|
98 |
+
self.monitor = monitor
|
99 |
+
if ckpt_path is not None:
|
100 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
101 |
+
|
102 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
103 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
104 |
+
|
105 |
+
self.loss_type = loss_type
|
106 |
+
|
107 |
+
self.learn_logvar = learn_logvar
|
108 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
109 |
+
if self.learn_logvar:
|
110 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
111 |
+
|
112 |
+
|
113 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
114 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
115 |
+
if exists(given_betas):
|
116 |
+
betas = given_betas
|
117 |
+
else:
|
118 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
119 |
+
cosine_s=cosine_s)
|
120 |
+
alphas = 1. - betas
|
121 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
122 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
123 |
+
|
124 |
+
timesteps, = betas.shape
|
125 |
+
self.num_timesteps = int(timesteps)
|
126 |
+
self.linear_start = linear_start
|
127 |
+
self.linear_end = linear_end
|
128 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
129 |
+
|
130 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
131 |
+
|
132 |
+
self.register_buffer('betas', to_torch(betas))
|
133 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
134 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
135 |
+
|
136 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
137 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
138 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
139 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
140 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
141 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
142 |
+
|
143 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
144 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
145 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
146 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
147 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
148 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
149 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
150 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
151 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
152 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
153 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
154 |
+
|
155 |
+
if self.parameterization == "eps":
|
156 |
+
lvlb_weights = self.betas ** 2 / (
|
157 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
158 |
+
elif self.parameterization == "x0":
|
159 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
160 |
+
else:
|
161 |
+
raise NotImplementedError("mu not supported")
|
162 |
+
# TODO how to choose this term
|
163 |
+
lvlb_weights[0] = lvlb_weights[1]
|
164 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
165 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
166 |
+
|
167 |
+
@contextmanager
|
168 |
+
def ema_scope(self, context=None):
|
169 |
+
if self.use_ema:
|
170 |
+
self.model_ema.store(self.model.parameters())
|
171 |
+
self.model_ema.copy_to(self.model)
|
172 |
+
if context is not None:
|
173 |
+
mainlogger.info(f"{context}: Switched to EMA weights")
|
174 |
+
try:
|
175 |
+
yield None
|
176 |
+
finally:
|
177 |
+
if self.use_ema:
|
178 |
+
self.model_ema.restore(self.model.parameters())
|
179 |
+
if context is not None:
|
180 |
+
mainlogger.info(f"{context}: Restored training weights")
|
181 |
+
|
182 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
183 |
+
sd = torch.load(path, map_location="cpu")
|
184 |
+
if "state_dict" in list(sd.keys()):
|
185 |
+
sd = sd["state_dict"]
|
186 |
+
keys = list(sd.keys())
|
187 |
+
for k in keys:
|
188 |
+
for ik in ignore_keys:
|
189 |
+
if k.startswith(ik):
|
190 |
+
mainlogger.info("Deleting key {} from state_dict.".format(k))
|
191 |
+
del sd[k]
|
192 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
193 |
+
sd, strict=False)
|
194 |
+
mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
195 |
+
if len(missing) > 0:
|
196 |
+
mainlogger.info(f"Missing Keys: {missing}")
|
197 |
+
if len(unexpected) > 0:
|
198 |
+
mainlogger.info(f"Unexpected Keys: {unexpected}")
|
199 |
+
|
200 |
+
def q_mean_variance(self, x_start, t):
|
201 |
+
"""
|
202 |
+
Get the distribution q(x_t | x_0).
|
203 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
204 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
205 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
206 |
+
"""
|
207 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
208 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
209 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
210 |
+
return mean, variance, log_variance
|
211 |
+
|
212 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
213 |
+
return (
|
214 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
215 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
216 |
+
)
|
217 |
+
|
218 |
+
def q_posterior(self, x_start, x_t, t):
|
219 |
+
posterior_mean = (
|
220 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
221 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
222 |
+
)
|
223 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
224 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
225 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
226 |
+
|
227 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
228 |
+
model_out = self.model(x, t)
|
229 |
+
if self.parameterization == "eps":
|
230 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
231 |
+
elif self.parameterization == "x0":
|
232 |
+
x_recon = model_out
|
233 |
+
if clip_denoised:
|
234 |
+
x_recon.clamp_(-1., 1.)
|
235 |
+
|
236 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
237 |
+
return model_mean, posterior_variance, posterior_log_variance
|
238 |
+
|
239 |
+
@torch.no_grad()
|
240 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
241 |
+
b, *_, device = *x.shape, x.device
|
242 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
243 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
244 |
+
# no noise when t == 0
|
245 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
246 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
247 |
+
|
248 |
+
@torch.no_grad()
|
249 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
250 |
+
device = self.betas.device
|
251 |
+
b = shape[0]
|
252 |
+
img = torch.randn(shape, device=device)
|
253 |
+
intermediates = [img]
|
254 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
255 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
256 |
+
clip_denoised=self.clip_denoised)
|
257 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
258 |
+
intermediates.append(img)
|
259 |
+
if return_intermediates:
|
260 |
+
return img, intermediates
|
261 |
+
return img
|
262 |
+
|
263 |
+
@torch.no_grad()
|
264 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
265 |
+
image_size = self.image_size
|
266 |
+
channels = self.channels
|
267 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
268 |
+
return_intermediates=return_intermediates)
|
269 |
+
|
270 |
+
def q_sample(self, x_start, t, noise=None):
|
271 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
272 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
|
273 |
+
extract_into_tensor(self.scale_arr, t, x_start.shape) +
|
274 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
275 |
+
|
276 |
+
def get_input(self, batch, k):
|
277 |
+
x = batch[k]
|
278 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
279 |
+
return x
|
280 |
+
|
281 |
+
def _get_rows_from_list(self, samples):
|
282 |
+
n_imgs_per_row = len(samples)
|
283 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
284 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
285 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
286 |
+
return denoise_grid
|
287 |
+
|
288 |
+
@torch.no_grad()
|
289 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
290 |
+
log = dict()
|
291 |
+
x = self.get_input(batch, self.first_stage_key)
|
292 |
+
N = min(x.shape[0], N)
|
293 |
+
n_row = min(x.shape[0], n_row)
|
294 |
+
x = x.to(self.device)[:N]
|
295 |
+
log["inputs"] = x
|
296 |
+
|
297 |
+
# get diffusion row
|
298 |
+
diffusion_row = list()
|
299 |
+
x_start = x[:n_row]
|
300 |
+
|
301 |
+
for t in range(self.num_timesteps):
|
302 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
303 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
304 |
+
t = t.to(self.device).long()
|
305 |
+
noise = torch.randn_like(x_start)
|
306 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
307 |
+
diffusion_row.append(x_noisy)
|
308 |
+
|
309 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
310 |
+
|
311 |
+
if sample:
|
312 |
+
# get denoise row
|
313 |
+
with self.ema_scope("Plotting"):
|
314 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
315 |
+
|
316 |
+
log["samples"] = samples
|
317 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
318 |
+
|
319 |
+
if return_keys:
|
320 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
321 |
+
return log
|
322 |
+
else:
|
323 |
+
return {key: log[key] for key in return_keys}
|
324 |
+
return log
|
325 |
+
|
326 |
+
|
327 |
+
class LatentDiffusion(DDPM):
|
328 |
+
"""main class"""
|
329 |
+
def __init__(self,
|
330 |
+
first_stage_config,
|
331 |
+
cond_stage_config,
|
332 |
+
num_timesteps_cond=None,
|
333 |
+
cond_stage_key="caption",
|
334 |
+
cond_stage_trainable=False,
|
335 |
+
cond_stage_forward=None,
|
336 |
+
conditioning_key=None,
|
337 |
+
uncond_prob=0.2,
|
338 |
+
uncond_type="empty_seq",
|
339 |
+
scale_factor=1.0,
|
340 |
+
scale_by_std=False,
|
341 |
+
encoder_type="2d",
|
342 |
+
only_model=False,
|
343 |
+
use_scale=False,
|
344 |
+
scale_a=1,
|
345 |
+
scale_b=0.3,
|
346 |
+
mid_step=400,
|
347 |
+
fix_scale_bug=False,
|
348 |
+
perframe_ae=True,
|
349 |
+
*args, **kwargs):
|
350 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
351 |
+
self.scale_by_std = scale_by_std
|
352 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
353 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
354 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
355 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
356 |
+
conditioning_key = default(conditioning_key, 'crossattn')
|
357 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
358 |
+
|
359 |
+
self.cond_stage_trainable = cond_stage_trainable
|
360 |
+
self.cond_stage_key = cond_stage_key
|
361 |
+
self.perframe_ae = perframe_ae
|
362 |
+
|
363 |
+
# scale factor
|
364 |
+
self.use_scale=use_scale
|
365 |
+
if self.use_scale:
|
366 |
+
self.scale_a=scale_a
|
367 |
+
self.scale_b=scale_b
|
368 |
+
if fix_scale_bug:
|
369 |
+
scale_step=self.num_timesteps-mid_step
|
370 |
+
else: #bug
|
371 |
+
scale_step = self.num_timesteps
|
372 |
+
|
373 |
+
scale_arr1 = np.linspace(scale_a, scale_b, mid_step)
|
374 |
+
scale_arr2 = np.full(scale_step, scale_b)
|
375 |
+
scale_arr = np.concatenate((scale_arr1, scale_arr2))
|
376 |
+
scale_arr_prev = np.append(scale_a, scale_arr[:-1])
|
377 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
378 |
+
self.register_buffer('scale_arr', to_torch(scale_arr))
|
379 |
+
|
380 |
+
try:
|
381 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
382 |
+
except:
|
383 |
+
self.num_downs = 0
|
384 |
+
if not scale_by_std:
|
385 |
+
self.scale_factor = scale_factor
|
386 |
+
else:
|
387 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
388 |
+
self.instantiate_first_stage(first_stage_config)
|
389 |
+
self.instantiate_cond_stage(cond_stage_config)
|
390 |
+
self.first_stage_config = first_stage_config
|
391 |
+
self.cond_stage_config = cond_stage_config
|
392 |
+
self.clip_denoised = False
|
393 |
+
|
394 |
+
self.cond_stage_forward = cond_stage_forward
|
395 |
+
self.encoder_type = encoder_type
|
396 |
+
assert(encoder_type in ["2d", "3d"])
|
397 |
+
self.uncond_prob = uncond_prob
|
398 |
+
self.classifier_free_guidance = True if uncond_prob > 0 else False
|
399 |
+
assert(uncond_type in ["zero_embed", "empty_seq"])
|
400 |
+
self.uncond_type = uncond_type
|
401 |
+
|
402 |
+
|
403 |
+
self.restarted_from_ckpt = False
|
404 |
+
if ckpt_path is not None:
|
405 |
+
self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
|
406 |
+
self.restarted_from_ckpt = True
|
407 |
+
|
408 |
+
|
409 |
+
def make_cond_schedule(self, ):
|
410 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
411 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
412 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
413 |
+
|
414 |
+
def q_sample(self, x_start, t, noise=None):
|
415 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
416 |
+
if self.use_scale:
|
417 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
|
418 |
+
extract_into_tensor(self.scale_arr, t, x_start.shape) +
|
419 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
420 |
+
else:
|
421 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
422 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
423 |
+
|
424 |
+
|
425 |
+
def _freeze_model(self):
|
426 |
+
for name, para in self.model.diffusion_model.named_parameters():
|
427 |
+
para.requires_grad = False
|
428 |
+
|
429 |
+
def instantiate_first_stage(self, config):
|
430 |
+
model = instantiate_from_config(config)
|
431 |
+
self.first_stage_model = model.eval()
|
432 |
+
self.first_stage_model.train = disabled_train
|
433 |
+
for param in self.first_stage_model.parameters():
|
434 |
+
param.requires_grad = False
|
435 |
+
|
436 |
+
def instantiate_cond_stage(self, config):
|
437 |
+
if not self.cond_stage_trainable:
|
438 |
+
model = instantiate_from_config(config)
|
439 |
+
self.cond_stage_model = model.eval()
|
440 |
+
self.cond_stage_model.train = disabled_train
|
441 |
+
for param in self.cond_stage_model.parameters():
|
442 |
+
param.requires_grad = False
|
443 |
+
else:
|
444 |
+
model = instantiate_from_config(config)
|
445 |
+
self.cond_stage_model = model
|
446 |
+
|
447 |
+
def get_learned_conditioning(self, c):
|
448 |
+
if self.cond_stage_forward is None:
|
449 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
450 |
+
c = self.cond_stage_model.encode(c)
|
451 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
452 |
+
c = c.mode()
|
453 |
+
else:
|
454 |
+
c = self.cond_stage_model(c)
|
455 |
+
else:
|
456 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
457 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
458 |
+
return c
|
459 |
+
|
460 |
+
def get_first_stage_encoding(self, encoder_posterior, noise=None):
|
461 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
462 |
+
z = encoder_posterior.sample(noise=noise)
|
463 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
464 |
+
z = encoder_posterior
|
465 |
+
else:
|
466 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
467 |
+
return self.scale_factor * z
|
468 |
+
|
469 |
+
@torch.no_grad()
|
470 |
+
def encode_first_stage(self, x):
|
471 |
+
if self.encoder_type == "2d" and x.dim() == 5 and not self.perframe_ae:
|
472 |
+
b, _, t, _, _ = x.shape
|
473 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
474 |
+
reshape_back = True
|
475 |
+
else:
|
476 |
+
reshape_back = False
|
477 |
+
|
478 |
+
if not self.perframe_ae:
|
479 |
+
encoder_posterior = self.first_stage_model.encode(x)
|
480 |
+
results = self.get_first_stage_encoding(encoder_posterior).detach()
|
481 |
+
else:
|
482 |
+
results = []
|
483 |
+
for index in range(x.shape[2]):
|
484 |
+
frame_batch = self.first_stage_model.encode(x[:,:,index,:,:])
|
485 |
+
frame_result = self.get_first_stage_encoding(frame_batch).detach()
|
486 |
+
results.append(frame_result)
|
487 |
+
results = torch.stack(results, dim=2)
|
488 |
+
|
489 |
+
if reshape_back:
|
490 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
491 |
+
|
492 |
+
return results
|
493 |
+
|
494 |
+
@torch.no_grad()
|
495 |
+
def encode_first_stage_2DAE(self, x):
|
496 |
+
|
497 |
+
b, _, t, _, _ = x.shape
|
498 |
+
results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2)
|
499 |
+
|
500 |
+
return results
|
501 |
+
|
502 |
+
def decode_core(self, z, **kwargs):
|
503 |
+
if self.encoder_type == "2d" and z.dim() == 5 and not self.perframe_ae:
|
504 |
+
b, _, t, _, _ = z.shape
|
505 |
+
z = rearrange(z, 'b c t h w -> (b t) c h w')
|
506 |
+
reshape_back = True
|
507 |
+
else:
|
508 |
+
reshape_back = False
|
509 |
+
|
510 |
+
if not self.perframe_ae:
|
511 |
+
z = 1. / self.scale_factor * z
|
512 |
+
results = self.first_stage_model.decode(z, **kwargs)
|
513 |
+
else:
|
514 |
+
results = []
|
515 |
+
for index in range(z.shape[2]):
|
516 |
+
frame_z = 1. / self.scale_factor * z[:,:,index,:,:]
|
517 |
+
frame_result = self.first_stage_model.decode(frame_z, **kwargs)
|
518 |
+
results.append(frame_result)
|
519 |
+
results = torch.stack(results, dim=2)
|
520 |
+
|
521 |
+
|
522 |
+
if reshape_back:
|
523 |
+
results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
|
524 |
+
return results
|
525 |
+
|
526 |
+
@torch.no_grad()
|
527 |
+
def decode_first_stage(self, z, **kwargs):
|
528 |
+
return self.decode_core(z, **kwargs)
|
529 |
+
|
530 |
+
def apply_model(self, x_noisy, t, cond, **kwargs):
|
531 |
+
if isinstance(cond, dict):
|
532 |
+
# hybrid case, cond is exptected to be a dict
|
533 |
+
pass
|
534 |
+
else:
|
535 |
+
if not isinstance(cond, list):
|
536 |
+
cond = [cond]
|
537 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
538 |
+
cond = {key: cond}
|
539 |
+
|
540 |
+
x_recon = self.model(x_noisy, t, **cond, **kwargs)
|
541 |
+
|
542 |
+
if isinstance(x_recon, tuple):
|
543 |
+
return x_recon[0]
|
544 |
+
else:
|
545 |
+
return x_recon
|
546 |
+
|
547 |
+
def _get_denoise_row_from_list(self, samples, desc=''):
|
548 |
+
denoise_row = []
|
549 |
+
for zd in tqdm(samples, desc=desc):
|
550 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device)))
|
551 |
+
n_log_timesteps = len(denoise_row)
|
552 |
+
|
553 |
+
denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
|
554 |
+
|
555 |
+
if denoise_row.dim() == 5:
|
556 |
+
# img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
|
557 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
558 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
559 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
|
560 |
+
elif denoise_row.dim() == 6:
|
561 |
+
# video, grid_size=[n_log_timesteps*bs, t]
|
562 |
+
video_length = denoise_row.shape[3]
|
563 |
+
denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
|
564 |
+
denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
|
565 |
+
denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
|
566 |
+
denoise_grid = make_grid(denoise_grid, nrow=video_length)
|
567 |
+
else:
|
568 |
+
raise ValueError
|
569 |
+
|
570 |
+
return denoise_grid
|
571 |
+
|
572 |
+
|
573 |
+
@torch.no_grad()
|
574 |
+
def decode_first_stage_2DAE(self, z, **kwargs):
|
575 |
+
|
576 |
+
b, _, t, _, _ = z.shape
|
577 |
+
z = 1. / self.scale_factor * z
|
578 |
+
results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2)
|
579 |
+
|
580 |
+
return results
|
581 |
+
|
582 |
+
|
583 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
|
584 |
+
t_in = t
|
585 |
+
model_out = self.apply_model(x, t_in, c, **kwargs)
|
586 |
+
|
587 |
+
if score_corrector is not None:
|
588 |
+
assert self.parameterization == "eps"
|
589 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
590 |
+
|
591 |
+
if self.parameterization == "eps":
|
592 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
593 |
+
elif self.parameterization == "x0":
|
594 |
+
x_recon = model_out
|
595 |
+
else:
|
596 |
+
raise NotImplementedError()
|
597 |
+
|
598 |
+
if clip_denoised:
|
599 |
+
x_recon.clamp_(-1., 1.)
|
600 |
+
|
601 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
602 |
+
|
603 |
+
if return_x0:
|
604 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
605 |
+
else:
|
606 |
+
return model_mean, posterior_variance, posterior_log_variance
|
607 |
+
|
608 |
+
@torch.no_grad()
|
609 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
|
610 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
|
611 |
+
b, *_, device = *x.shape, x.device
|
612 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
|
613 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
|
614 |
+
if return_x0:
|
615 |
+
model_mean, _, model_log_variance, x0 = outputs
|
616 |
+
else:
|
617 |
+
model_mean, _, model_log_variance = outputs
|
618 |
+
|
619 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
620 |
+
if noise_dropout > 0.:
|
621 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
622 |
+
# no noise when t == 0
|
623 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
624 |
+
|
625 |
+
if return_x0:
|
626 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
627 |
+
else:
|
628 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
629 |
+
|
630 |
+
@torch.no_grad()
|
631 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
|
632 |
+
timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
|
633 |
+
|
634 |
+
if not log_every_t:
|
635 |
+
log_every_t = self.log_every_t
|
636 |
+
device = self.betas.device
|
637 |
+
b = shape[0]
|
638 |
+
# sample an initial noise
|
639 |
+
if x_T is None:
|
640 |
+
img = torch.randn(shape, device=device)
|
641 |
+
else:
|
642 |
+
img = x_T
|
643 |
+
|
644 |
+
intermediates = [img]
|
645 |
+
if timesteps is None:
|
646 |
+
timesteps = self.num_timesteps
|
647 |
+
if start_T is not None:
|
648 |
+
timesteps = min(timesteps, start_T)
|
649 |
+
|
650 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
|
651 |
+
|
652 |
+
if mask is not None:
|
653 |
+
assert x0 is not None
|
654 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
655 |
+
|
656 |
+
for i in iterator:
|
657 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
658 |
+
if self.shorten_cond_schedule:
|
659 |
+
assert self.model.conditioning_key != 'hybrid'
|
660 |
+
tc = self.cond_ids[ts].to(cond.device)
|
661 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
662 |
+
|
663 |
+
img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
|
664 |
+
if mask is not None:
|
665 |
+
img_orig = self.q_sample(x0, ts)
|
666 |
+
img = img_orig * mask + (1. - mask) * img
|
667 |
+
|
668 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
669 |
+
intermediates.append(img)
|
670 |
+
if callback: callback(i)
|
671 |
+
if img_callback: img_callback(img, i)
|
672 |
+
|
673 |
+
if return_intermediates:
|
674 |
+
return img, intermediates
|
675 |
+
return img
|
676 |
+
|
677 |
+
|
678 |
+
class LatentVisualDiffusion(LatentDiffusion):
|
679 |
+
def __init__(self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs):
|
680 |
+
super().__init__(*args, **kwargs)
|
681 |
+
self.random_cond = random_cond
|
682 |
+
self.instantiate_img_embedder(cond_img_config, freeze=True)
|
683 |
+
num_tokens = 16 if finegrained else 4
|
684 |
+
self.image_proj_model = self.init_projector(use_finegrained=finegrained, num_tokens=num_tokens, input_dim=1024,\
|
685 |
+
cross_attention_dim=1024, dim=1280)
|
686 |
+
|
687 |
+
def instantiate_img_embedder(self, config, freeze=True):
|
688 |
+
embedder = instantiate_from_config(config)
|
689 |
+
if freeze:
|
690 |
+
self.embedder = embedder.eval()
|
691 |
+
self.embedder.train = disabled_train
|
692 |
+
for param in self.embedder.parameters():
|
693 |
+
param.requires_grad = False
|
694 |
+
|
695 |
+
def init_projector(self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim):
|
696 |
+
if not use_finegrained:
|
697 |
+
image_proj_model = ImageProjModel(clip_extra_context_tokens=num_tokens, cross_attention_dim=cross_attention_dim,
|
698 |
+
clip_embeddings_dim=input_dim
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
image_proj_model = Resampler(dim=input_dim, depth=4, dim_head=64, heads=12, num_queries=num_tokens,
|
702 |
+
embedding_dim=dim, output_dim=cross_attention_dim, ff_mult=4
|
703 |
+
)
|
704 |
+
return image_proj_model
|
705 |
+
|
706 |
+
## Never delete this func: it is used in log_images() and inference stage
|
707 |
+
def get_image_embeds(self, batch_imgs):
|
708 |
+
## img: b c h w
|
709 |
+
img_token = self.embedder(batch_imgs)
|
710 |
+
img_emb = self.image_proj_model(img_token)
|
711 |
+
return img_emb
|
712 |
+
|
713 |
+
|
714 |
+
class DiffusionWrapper(pl.LightningModule):
|
715 |
+
def __init__(self, diff_model_config, conditioning_key):
|
716 |
+
super().__init__()
|
717 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
718 |
+
self.conditioning_key = conditioning_key
|
719 |
+
|
720 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
|
721 |
+
c_adm=None, s=None, mask=None, **kwargs):
|
722 |
+
# temporal_context = fps is foNone
|
723 |
+
if self.conditioning_key is None:
|
724 |
+
out = self.diffusion_model(x, t)
|
725 |
+
elif self.conditioning_key == 'concat':
|
726 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
727 |
+
out = self.diffusion_model(xc, t, **kwargs)
|
728 |
+
elif self.conditioning_key == 'crossattn':
|
729 |
+
cc = torch.cat(c_crossattn, 1)
|
730 |
+
out = self.diffusion_model(x, t, context=cc, **kwargs)
|
731 |
+
elif self.conditioning_key == 'hybrid':
|
732 |
+
## it is just right [b,c,t,h,w]: concatenate in channel dim
|
733 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
734 |
+
cc = torch.cat(c_crossattn, 1)
|
735 |
+
out = self.diffusion_model(xc, t, context=cc)
|
736 |
+
elif self.conditioning_key == 'resblockcond':
|
737 |
+
cc = c_crossattn[0]
|
738 |
+
out = self.diffusion_model(x, t, context=cc)
|
739 |
+
elif self.conditioning_key == 'adm':
|
740 |
+
cc = c_crossattn[0]
|
741 |
+
out = self.diffusion_model(x, t, y=cc)
|
742 |
+
elif self.conditioning_key == 'hybrid-adm':
|
743 |
+
assert c_adm is not None
|
744 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
745 |
+
cc = torch.cat(c_crossattn, 1)
|
746 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
747 |
+
elif self.conditioning_key == 'hybrid-time':
|
748 |
+
assert s is not None
|
749 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
750 |
+
cc = torch.cat(c_crossattn, 1)
|
751 |
+
out = self.diffusion_model(xc, t, context=cc, s=s)
|
752 |
+
elif self.conditioning_key == 'concat-time-mask':
|
753 |
+
# assert s is not None
|
754 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
755 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
756 |
+
out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
|
757 |
+
elif self.conditioning_key == 'concat-adm-mask':
|
758 |
+
# assert s is not None
|
759 |
+
# mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
|
760 |
+
if c_concat is not None:
|
761 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
762 |
+
else:
|
763 |
+
xc = x
|
764 |
+
out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
|
765 |
+
elif self.conditioning_key == 'hybrid-adm-mask':
|
766 |
+
cc = torch.cat(c_crossattn, 1)
|
767 |
+
if c_concat is not None:
|
768 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
769 |
+
else:
|
770 |
+
xc = x
|
771 |
+
out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
|
772 |
+
elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
|
773 |
+
# assert s is not None
|
774 |
+
assert c_adm is not None
|
775 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
776 |
+
cc = torch.cat(c_crossattn, 1)
|
777 |
+
out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
|
778 |
+
else:
|
779 |
+
raise NotImplementedError()
|
780 |
+
|
781 |
+
return out
|
lvdm/models/ddpm3d_cond.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, random
|
2 |
+
from einops import rearrange, repeat
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from utils.utils import instantiate_from_config
|
6 |
+
from lvdm.models.ddpm3d import LatentDiffusion
|
7 |
+
from lvdm.models.samplers.ddim import DDIMSampler
|
8 |
+
from lvdm.modules.attention import TemporalTransformer
|
9 |
+
|
10 |
+
class T2VAdapterDepth(LatentDiffusion):
|
11 |
+
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
self.depth_stage = instantiate_from_config(depth_stage_config)
|
14 |
+
self.adapter = instantiate_from_config(adapter_config)
|
15 |
+
self.condtype = adapter_config.cond_name
|
16 |
+
|
17 |
+
if 'pretrained' in adapter_config:
|
18 |
+
self.load_pretrained_adapter(adapter_config.pretrained)
|
19 |
+
|
20 |
+
for param in self.depth_stage.parameters():
|
21 |
+
param.requires_grad = False
|
22 |
+
|
23 |
+
def prepare_midas_input(self, x):
|
24 |
+
# x: (b, c, h, w)
|
25 |
+
h, w = x.shape[-2:]
|
26 |
+
x_midas = torch.nn.functional.interpolate(x, size=(h, w), mode='bilinear')
|
27 |
+
return x_midas
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def get_batch_depth(self, x, target_size):
|
31 |
+
# x: (b, c, t, h, w)
|
32 |
+
# get depth image, reshape to target_size and normalize to [-1, 1]
|
33 |
+
b, c, t, h, w = x.shape
|
34 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
35 |
+
x_midas = self.prepare_midas_input(x)
|
36 |
+
cond_depth = self.depth_stage(x_midas)
|
37 |
+
cond_depth = torch.nn.functional.interpolate(cond_depth, size=target_size, mode='bilinear')
|
38 |
+
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True)
|
39 |
+
cond_depth = (cond_depth - depth_min) / (depth_max - depth_min + 1e-7)
|
40 |
+
cond_depth = 2. * cond_depth - 1.
|
41 |
+
cond_depth = rearrange(cond_depth, '(b t) c h w -> b c t h w', b=b, t=t)
|
42 |
+
return cond_depth
|
43 |
+
|
44 |
+
def load_pretrained_adapter(self, adapter_ckpt):
|
45 |
+
# load pretrained adapter
|
46 |
+
print(">>> Load pretrained adapter checkpoint.")
|
47 |
+
try:
|
48 |
+
state_dict = torch.load(adapter_ckpt, map_location="cpu")
|
49 |
+
if "state_dict" in list(state_dict.keys()):
|
50 |
+
state_dict = state_dict["state_dict"]
|
51 |
+
self.adapter.load_state_dict(state_dict, strict=True)
|
52 |
+
except:
|
53 |
+
state_dict = torch.load(adapter_ckpt, map_location=f"cpu")
|
54 |
+
if "state_dict" in list(state_dict.keys()):
|
55 |
+
state_dict = state_dict["state_dict"]
|
56 |
+
model_state_dict = self.adapter.state_dict()
|
57 |
+
n_unmatched = 0
|
58 |
+
for n, p in model_state_dict.items():
|
59 |
+
if p.shape != state_dict[n].shape:
|
60 |
+
state_dict.pop(n)
|
61 |
+
n_unmatched += 1
|
62 |
+
model_state_dict.update(state_dict)
|
63 |
+
self.adapter.load_state_dict(model_state_dict)
|
64 |
+
print(f"Pretrained adapter IS NOT complete [{n_unmatched} units have unmatched shape].")
|
65 |
+
|
66 |
+
|
67 |
+
class T2IAdapterStyleAS(LatentDiffusion):
|
68 |
+
def __init__(self, style_stage_config, adapter_config, *args, **kwargs):
|
69 |
+
super(T2IAdapterStyleAS, self).__init__(*args, **kwargs)
|
70 |
+
self.adapter = instantiate_from_config(adapter_config)
|
71 |
+
self.condtype = adapter_config.cond_name
|
72 |
+
## adapter loading / saving paths
|
73 |
+
self.style_stage_model = instantiate_from_config(style_stage_config)
|
74 |
+
|
75 |
+
self.adapter.create_cross_attention_adapter(self.model.diffusion_model)
|
76 |
+
|
77 |
+
if 'pretrained' in adapter_config:
|
78 |
+
self.load_pretrained_adapter(adapter_config.pretrained)
|
79 |
+
|
80 |
+
# freeze the style stage model
|
81 |
+
for param in self.style_stage_model.parameters():
|
82 |
+
param.requires_grad = False
|
83 |
+
|
84 |
+
def load_pretrained_adapter(self, pretrained):
|
85 |
+
state_dict = torch.load(pretrained, map_location=f"cpu")
|
86 |
+
|
87 |
+
if "state_dict" in list(state_dict.keys()):
|
88 |
+
state_dict = state_dict["state_dict"]
|
89 |
+
self.adapter.load_state_dict(state_dict, strict=False)
|
90 |
+
print('>>> adapter checkpoint loaded.')
|
91 |
+
|
92 |
+
@torch.no_grad()
|
93 |
+
def get_batch_style(self, batch_x):
|
94 |
+
b, c, h, w = batch_x.shape
|
95 |
+
cond_style = self.style_stage_model(batch_x)
|
96 |
+
return cond_style
|
97 |
+
|
98 |
+
class T2VFintoneStyleAS(T2IAdapterStyleAS):
|
99 |
+
def _get_temp_attn_parameters(self):
|
100 |
+
temp_attn_params = []
|
101 |
+
def register_recr(net_, name):
|
102 |
+
if isinstance(net_, TemporalTransformer):
|
103 |
+
temp_attn_params.extend(net_.parameters())
|
104 |
+
else:
|
105 |
+
for sub_name, net in net_.named_children():
|
106 |
+
register_recr(net, f"{name}.{sub_name}")
|
107 |
+
|
108 |
+
for name, net in self.model.diffusion_model.named_children():
|
109 |
+
register_recr(net, name)
|
110 |
+
return temp_attn_params
|
111 |
+
|
112 |
+
def _get_temp_attn_state_dict(self):
|
113 |
+
temp_attn_state_dict = {}
|
114 |
+
def register_recr(net_, name):
|
115 |
+
if isinstance(net_, TemporalTransformer):
|
116 |
+
temp_attn_state_dict[name] = net_.state_dict()
|
117 |
+
else:
|
118 |
+
for sub_name, net in net_.named_children():
|
119 |
+
register_recr(net, f"{name}.{sub_name}")
|
120 |
+
|
121 |
+
for name, net in self.model.diffusion_model.named_children():
|
122 |
+
register_recr(net, name)
|
123 |
+
return temp_attn_state_dict
|
124 |
+
|
125 |
+
def _load_temp_attn_state_dict(self, temp_attn_state_dict):
|
126 |
+
def register_recr(net_, name):
|
127 |
+
if isinstance(net_, TemporalTransformer):
|
128 |
+
net_.load_state_dict(temp_attn_state_dict[name], strict=True)
|
129 |
+
else:
|
130 |
+
for sub_name, net in net_.named_children():
|
131 |
+
register_recr(net, f"{name}.{sub_name}")
|
132 |
+
|
133 |
+
for name, net in self.model.diffusion_model.named_children():
|
134 |
+
register_recr(net, name)
|
135 |
+
|
136 |
+
def load_pretrained_temporal(self, pretrained):
|
137 |
+
temp_attn_ckpt = torch.load(pretrained, map_location=f"cpu")
|
138 |
+
if "state_dict" in list(temp_attn_ckpt.keys()):
|
139 |
+
temp_attn_ckpt = temp_attn_ckpt["state_dict"]
|
140 |
+
self._load_temp_attn_state_dict(temp_attn_ckpt)
|
141 |
+
print('>>> Temporal Attention checkpoint loaded.')
|
lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc
ADDED
Binary file (10.5 kB). View file
|
|
lvdm/models/samplers/ddim.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from tqdm import tqdm
|
3 |
+
import torch
|
4 |
+
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
|
5 |
+
from lvdm.common import noise_like
|
6 |
+
|
7 |
+
|
8 |
+
class DDIMSampler(object):
|
9 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
10 |
+
super().__init__()
|
11 |
+
self.model = model
|
12 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
13 |
+
self.schedule = schedule
|
14 |
+
self.counter = 0
|
15 |
+
|
16 |
+
def register_buffer(self, name, attr):
|
17 |
+
if type(attr) == torch.Tensor:
|
18 |
+
if attr.device != torch.device("cuda"):
|
19 |
+
attr = attr.to(torch.device("cuda"))
|
20 |
+
setattr(self, name, attr)
|
21 |
+
|
22 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
23 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
24 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
25 |
+
alphas_cumprod = self.model.alphas_cumprod
|
26 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
27 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
28 |
+
|
29 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
30 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
31 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
32 |
+
self.use_scale = self.model.use_scale
|
33 |
+
|
34 |
+
if self.use_scale:
|
35 |
+
self.register_buffer('scale_arr', to_torch(self.model.scale_arr))
|
36 |
+
ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps]
|
37 |
+
self.register_buffer('ddim_scale_arr', ddim_scale_arr)
|
38 |
+
ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist())
|
39 |
+
self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr)
|
40 |
+
|
41 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
42 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
43 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
44 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
45 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
46 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
47 |
+
|
48 |
+
# ddim sampling parameters
|
49 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
50 |
+
ddim_timesteps=self.ddim_timesteps,
|
51 |
+
eta=ddim_eta,verbose=verbose)
|
52 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
53 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
54 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
55 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
56 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
57 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
58 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
59 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def sample(self,
|
63 |
+
S,
|
64 |
+
batch_size,
|
65 |
+
shape,
|
66 |
+
conditioning=None,
|
67 |
+
callback=None,
|
68 |
+
normals_sequence=None,
|
69 |
+
img_callback=None,
|
70 |
+
quantize_x0=False,
|
71 |
+
eta=0.,
|
72 |
+
mask=None,
|
73 |
+
x0=None,
|
74 |
+
temperature=1.,
|
75 |
+
noise_dropout=0.,
|
76 |
+
score_corrector=None,
|
77 |
+
corrector_kwargs=None,
|
78 |
+
verbose=True,
|
79 |
+
schedule_verbose=False,
|
80 |
+
x_T=None,
|
81 |
+
log_every_t=100,
|
82 |
+
unconditional_guidance_scale=1.,
|
83 |
+
unconditional_conditioning=None,
|
84 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
85 |
+
**kwargs
|
86 |
+
):
|
87 |
+
|
88 |
+
# check condition bs
|
89 |
+
if conditioning is not None:
|
90 |
+
if isinstance(conditioning, dict):
|
91 |
+
try:
|
92 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
93 |
+
except:
|
94 |
+
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
|
95 |
+
|
96 |
+
if cbs != batch_size:
|
97 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
98 |
+
else:
|
99 |
+
if conditioning.shape[0] != batch_size:
|
100 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
101 |
+
|
102 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
|
103 |
+
|
104 |
+
# make shape
|
105 |
+
if len(shape) == 3:
|
106 |
+
C, H, W = shape
|
107 |
+
size = (batch_size, C, H, W)
|
108 |
+
elif len(shape) == 4:
|
109 |
+
C, T, H, W = shape
|
110 |
+
size = (batch_size, C, T, H, W)
|
111 |
+
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
112 |
+
|
113 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
114 |
+
callback=callback,
|
115 |
+
img_callback=img_callback,
|
116 |
+
quantize_denoised=quantize_x0,
|
117 |
+
mask=mask, x0=x0,
|
118 |
+
ddim_use_original_steps=False,
|
119 |
+
noise_dropout=noise_dropout,
|
120 |
+
temperature=temperature,
|
121 |
+
score_corrector=score_corrector,
|
122 |
+
corrector_kwargs=corrector_kwargs,
|
123 |
+
x_T=x_T,
|
124 |
+
log_every_t=log_every_t,
|
125 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
126 |
+
unconditional_conditioning=unconditional_conditioning,
|
127 |
+
verbose=verbose,
|
128 |
+
**kwargs)
|
129 |
+
return samples, intermediates
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def ddim_sampling(self, cond, shape,
|
133 |
+
x_T=None, ddim_use_original_steps=False,
|
134 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
135 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
136 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
137 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
|
138 |
+
cond_tau=1., target_size=None, start_timesteps=None,
|
139 |
+
**kwargs):
|
140 |
+
device = self.model.betas.device
|
141 |
+
b = shape[0]
|
142 |
+
if x_T is None:
|
143 |
+
img = torch.randn(shape, device=device)
|
144 |
+
else:
|
145 |
+
img = x_T
|
146 |
+
|
147 |
+
if timesteps is None:
|
148 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
149 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
150 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
151 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
152 |
+
|
153 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
154 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
155 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
156 |
+
if verbose:
|
157 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
158 |
+
else:
|
159 |
+
iterator = time_range
|
160 |
+
|
161 |
+
init_x0 = False
|
162 |
+
clean_cond = kwargs.pop("clean_cond", False)
|
163 |
+
for i, step in enumerate(iterator):
|
164 |
+
index = total_steps - i - 1
|
165 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
166 |
+
if start_timesteps is not None:
|
167 |
+
assert x0 is not None
|
168 |
+
if step > start_timesteps*time_range[0]:
|
169 |
+
continue
|
170 |
+
elif not init_x0:
|
171 |
+
img = self.model.q_sample(x0, ts)
|
172 |
+
init_x0 = True
|
173 |
+
|
174 |
+
# use mask to blend noised original latent (img_orig) & new sampled latent (img)
|
175 |
+
if mask is not None:
|
176 |
+
assert x0 is not None
|
177 |
+
if clean_cond:
|
178 |
+
img_orig = x0
|
179 |
+
else:
|
180 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
|
181 |
+
img = img_orig * mask + (1. - mask) * img # keep original & modify use img
|
182 |
+
|
183 |
+
index_clip = int((1 - cond_tau) * total_steps)
|
184 |
+
if index <= index_clip and target_size is not None:
|
185 |
+
target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8]
|
186 |
+
img = torch.nn.functional.interpolate(
|
187 |
+
img,
|
188 |
+
size=target_size_,
|
189 |
+
mode="nearest",
|
190 |
+
)
|
191 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
192 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
193 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
194 |
+
corrector_kwargs=corrector_kwargs,
|
195 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
196 |
+
unconditional_conditioning=unconditional_conditioning,
|
197 |
+
x0=x0,
|
198 |
+
**kwargs)
|
199 |
+
|
200 |
+
img, pred_x0 = outs
|
201 |
+
if callback: callback(i)
|
202 |
+
if img_callback: img_callback(pred_x0, i)
|
203 |
+
|
204 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
205 |
+
intermediates['x_inter'].append(img)
|
206 |
+
intermediates['pred_x0'].append(pred_x0)
|
207 |
+
|
208 |
+
return img, intermediates
|
209 |
+
|
210 |
+
@torch.no_grad()
|
211 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
212 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
213 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
214 |
+
uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
|
215 |
+
b, *_, device = *x.shape, x.device
|
216 |
+
if x.dim() == 5:
|
217 |
+
is_video = True
|
218 |
+
else:
|
219 |
+
is_video = False
|
220 |
+
|
221 |
+
uncond_kwargs = kwargs.copy()
|
222 |
+
uncond_kwargs['append_to_context'] = None
|
223 |
+
|
224 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
225 |
+
e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
|
226 |
+
else:
|
227 |
+
# with unconditional condition
|
228 |
+
if isinstance(c, torch.Tensor):
|
229 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
230 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
|
231 |
+
elif isinstance(c, dict):
|
232 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
233 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
|
234 |
+
else:
|
235 |
+
raise NotImplementedError
|
236 |
+
# text cfg
|
237 |
+
if uc_type is None:
|
238 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
239 |
+
else:
|
240 |
+
if uc_type == 'cfg_original':
|
241 |
+
e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
|
242 |
+
elif uc_type == 'cfg_ours':
|
243 |
+
e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
|
244 |
+
else:
|
245 |
+
raise NotImplementedError
|
246 |
+
# temporal guidance
|
247 |
+
if conditional_guidance_scale_temporal is not None:
|
248 |
+
e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
|
249 |
+
e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
|
250 |
+
e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)
|
251 |
+
|
252 |
+
if score_corrector is not None:
|
253 |
+
assert self.model.parameterization == "eps"
|
254 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
255 |
+
|
256 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
257 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
258 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
259 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
260 |
+
# select parameters corresponding to the currently considered timestep
|
261 |
+
|
262 |
+
if is_video:
|
263 |
+
size = (b, 1, 1, 1, 1)
|
264 |
+
else:
|
265 |
+
size = (b, 1, 1, 1)
|
266 |
+
a_t = torch.full(size, alphas[index], device=device)
|
267 |
+
a_prev = torch.full(size, alphas_prev[index], device=device)
|
268 |
+
sigma_t = torch.full(size, sigmas[index], device=device)
|
269 |
+
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
|
270 |
+
|
271 |
+
# current prediction for x_0
|
272 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
273 |
+
if quantize_denoised:
|
274 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
275 |
+
# direction pointing to x_t
|
276 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
277 |
+
|
278 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
279 |
+
if noise_dropout > 0.:
|
280 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
281 |
+
|
282 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
283 |
+
if self.use_scale:
|
284 |
+
scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr
|
285 |
+
scale_t = torch.full(size, scale_arr[index], device=device)
|
286 |
+
scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev
|
287 |
+
scale_t_prev = torch.full(size, scale_arr_prev[index], device=device)
|
288 |
+
pred_x0 /= scale_t
|
289 |
+
x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise
|
290 |
+
else:
|
291 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
292 |
+
|
293 |
+
return x_prev, pred_x0
|
294 |
+
|
295 |
+
|
296 |
+
@torch.no_grad()
|
297 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
298 |
+
# fast, but does not allow for exact reconstruction
|
299 |
+
# t serves as an index to gather the correct alphas
|
300 |
+
if use_original_steps:
|
301 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
302 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
303 |
+
else:
|
304 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
305 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
306 |
+
|
307 |
+
if noise is None:
|
308 |
+
noise = torch.randn_like(x0)
|
309 |
+
|
310 |
+
def extract_into_tensor(a, t, x_shape):
|
311 |
+
b, *_ = t.shape
|
312 |
+
out = a.gather(-1, t)
|
313 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
314 |
+
|
315 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
316 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
317 |
+
|
318 |
+
@torch.no_grad()
|
319 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
320 |
+
use_original_steps=False):
|
321 |
+
|
322 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
323 |
+
timesteps = timesteps[:t_start]
|
324 |
+
|
325 |
+
time_range = np.flip(timesteps)
|
326 |
+
total_steps = timesteps.shape[0]
|
327 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
328 |
+
|
329 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
330 |
+
x_dec = x_latent
|
331 |
+
for i, step in enumerate(iterator):
|
332 |
+
index = total_steps - i - 1
|
333 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
334 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
335 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
336 |
+
unconditional_conditioning=unconditional_conditioning)
|
337 |
+
return x_dec
|
338 |
+
|
339 |
+
|
340 |
+
class DDIMStyleSampler(DDIMSampler):
|
341 |
+
@torch.no_grad()
|
342 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
343 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
344 |
+
unconditional_guidance_scale=1., unconditional_guidance_scale_style=None, unconditional_conditioning=None,
|
345 |
+
uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
|
346 |
+
b, *_, device = *x.shape, x.device
|
347 |
+
if x.dim() == 5:
|
348 |
+
is_video = True
|
349 |
+
else:
|
350 |
+
is_video = False
|
351 |
+
uncond_kwargs = kwargs.copy()
|
352 |
+
uncond_kwargs['append_to_context'] = None
|
353 |
+
|
354 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
355 |
+
e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
|
356 |
+
else:
|
357 |
+
# with unconditional condition
|
358 |
+
if isinstance(c, torch.Tensor):
|
359 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
360 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
|
361 |
+
if unconditional_guidance_scale_style is not None:
|
362 |
+
e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs)
|
363 |
+
elif isinstance(c, dict):
|
364 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
365 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
|
366 |
+
if unconditional_guidance_scale_style is not None:
|
367 |
+
e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs)
|
368 |
+
else:
|
369 |
+
raise NotImplementedError
|
370 |
+
|
371 |
+
if unconditional_guidance_scale_style is None:
|
372 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
373 |
+
else:
|
374 |
+
e_t = e_t + unconditional_guidance_scale_style * (e_t - e_t_uncond_style) + \
|
375 |
+
unconditional_guidance_scale * (e_t_uncond_style - e_t_uncond)
|
376 |
+
|
377 |
+
# temporal guidance
|
378 |
+
if conditional_guidance_scale_temporal is not None:
|
379 |
+
e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
|
380 |
+
e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
|
381 |
+
e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)
|
382 |
+
|
383 |
+
if score_corrector is not None:
|
384 |
+
assert self.model.parameterization == "eps"
|
385 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
386 |
+
|
387 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
388 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
389 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
390 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
391 |
+
# select parameters corresponding to the currently considered timestep
|
392 |
+
|
393 |
+
if is_video:
|
394 |
+
size = (b, 1, 1, 1, 1)
|
395 |
+
else:
|
396 |
+
size = (b, 1, 1, 1)
|
397 |
+
a_t = torch.full(size, alphas[index], device=device)
|
398 |
+
a_prev = torch.full(size, alphas_prev[index], device=device)
|
399 |
+
sigma_t = torch.full(size, sigmas[index], device=device)
|
400 |
+
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
|
401 |
+
|
402 |
+
# current prediction for x_0
|
403 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
404 |
+
# print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f)
|
405 |
+
if quantize_denoised:
|
406 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
407 |
+
# direction pointing to x_t
|
408 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
409 |
+
# # norm pred_x0
|
410 |
+
# p=2
|
411 |
+
# s=()
|
412 |
+
# pred_x0 = pred_x0 - torch.max(torch.abs(pred_x0))
|
413 |
+
|
414 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
415 |
+
if noise_dropout > 0.:
|
416 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
417 |
+
|
418 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
419 |
+
|
420 |
+
return x_prev, pred_x0
|
lvdm/models/utils_diffusion.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
from einops import repeat
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
9 |
+
"""
|
10 |
+
Create sinusoidal timestep embeddings.
|
11 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
12 |
+
These may be fractional.
|
13 |
+
:param dim: the dimension of the output.
|
14 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
15 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
16 |
+
"""
|
17 |
+
if not repeat_only:
|
18 |
+
half = dim // 2
|
19 |
+
freqs = torch.exp(
|
20 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
21 |
+
).to(device=timesteps.device)
|
22 |
+
args = timesteps[:, None].float() * freqs[None]
|
23 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
24 |
+
if dim % 2:
|
25 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
26 |
+
else:
|
27 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
28 |
+
return embedding
|
29 |
+
|
30 |
+
|
31 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
32 |
+
if schedule == "linear":
|
33 |
+
betas = (
|
34 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
35 |
+
)
|
36 |
+
|
37 |
+
elif schedule == "cosine":
|
38 |
+
timesteps = (
|
39 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
40 |
+
)
|
41 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
42 |
+
alphas = torch.cos(alphas).pow(2)
|
43 |
+
alphas = alphas / alphas[0]
|
44 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
45 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
46 |
+
|
47 |
+
elif schedule == "sqrt_linear":
|
48 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
49 |
+
elif schedule == "sqrt":
|
50 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
51 |
+
else:
|
52 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
53 |
+
return betas.numpy()
|
54 |
+
|
55 |
+
|
56 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
57 |
+
if ddim_discr_method == 'uniform':
|
58 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
59 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
60 |
+
elif ddim_discr_method == 'quad':
|
61 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
64 |
+
|
65 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
66 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
67 |
+
steps_out = ddim_timesteps + 1
|
68 |
+
if verbose:
|
69 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
70 |
+
return steps_out
|
71 |
+
|
72 |
+
|
73 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
74 |
+
# select alphas for computing the variance schedule
|
75 |
+
# print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
|
76 |
+
alphas = alphacums[ddim_timesteps]
|
77 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
78 |
+
|
79 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
80 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
81 |
+
if verbose:
|
82 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
83 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
84 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
85 |
+
return sigmas, alphas, alphas_prev
|
86 |
+
|
87 |
+
|
88 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
89 |
+
"""
|
90 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
91 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
92 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
93 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
94 |
+
produces the cumulative product of (1-beta) up to that
|
95 |
+
part of the diffusion process.
|
96 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
97 |
+
prevent singularities.
|
98 |
+
"""
|
99 |
+
betas = []
|
100 |
+
for i in range(num_diffusion_timesteps):
|
101 |
+
t1 = i / num_diffusion_timesteps
|
102 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
103 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
104 |
+
return np.array(betas)
|
lvdm/modules/__pycache__/attention.cpython-39.pyc
ADDED
Binary file (24.6 kB). View file
|
|
lvdm/modules/attention.py
ADDED
@@ -0,0 +1,851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
try:
|
7 |
+
import xformers
|
8 |
+
import xformers.ops
|
9 |
+
XFORMERS_IS_AVAILBLE = True
|
10 |
+
except:
|
11 |
+
XFORMERS_IS_AVAILBLE = False
|
12 |
+
from lvdm.common import (
|
13 |
+
checkpoint,
|
14 |
+
exists,
|
15 |
+
default,
|
16 |
+
)
|
17 |
+
from lvdm.basics import (
|
18 |
+
zero_module,
|
19 |
+
)
|
20 |
+
|
21 |
+
class RelativePosition(nn.Module):
|
22 |
+
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
|
23 |
+
|
24 |
+
def __init__(self, num_units, max_relative_position):
|
25 |
+
super().__init__()
|
26 |
+
self.num_units = num_units
|
27 |
+
self.max_relative_position = max_relative_position
|
28 |
+
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
|
29 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
30 |
+
|
31 |
+
def forward(self, length_q, length_k):
|
32 |
+
device = self.embeddings_table.device
|
33 |
+
range_vec_q = torch.arange(length_q, device=device)
|
34 |
+
range_vec_k = torch.arange(length_k, device=device)
|
35 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
36 |
+
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
37 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
38 |
+
final_mat = final_mat.long()
|
39 |
+
embeddings = self.embeddings_table[final_mat]
|
40 |
+
return embeddings
|
41 |
+
|
42 |
+
|
43 |
+
class CrossAttention(nn.Module):
|
44 |
+
|
45 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
|
46 |
+
relative_position=False, temporal_length=None, img_cross_attention=False):
|
47 |
+
super().__init__()
|
48 |
+
inner_dim = dim_head * heads
|
49 |
+
context_dim = default(context_dim, query_dim)
|
50 |
+
|
51 |
+
self.scale = dim_head**-0.5
|
52 |
+
self.heads = heads
|
53 |
+
self.dim_head = dim_head
|
54 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
55 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
56 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
57 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
58 |
+
|
59 |
+
self.image_cross_attention_scale = 1.0
|
60 |
+
self.text_context_len = 77
|
61 |
+
self.img_cross_attention = img_cross_attention
|
62 |
+
if self.img_cross_attention:
|
63 |
+
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
64 |
+
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
|
65 |
+
|
66 |
+
self.relative_position = relative_position
|
67 |
+
if self.relative_position:
|
68 |
+
assert(temporal_length is not None)
|
69 |
+
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
70 |
+
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
|
71 |
+
else:
|
72 |
+
## only used for spatial attention, while NOT for temporal attention
|
73 |
+
if XFORMERS_IS_AVAILBLE and temporal_length is None:
|
74 |
+
self.forward = self.efficient_forward
|
75 |
+
|
76 |
+
def forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs):
|
77 |
+
h = self.heads
|
78 |
+
|
79 |
+
q = self.to_q(x)
|
80 |
+
context = default(context, x)
|
81 |
+
## considering image token additionally
|
82 |
+
if context is not None and self.img_cross_attention:
|
83 |
+
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
|
84 |
+
k = self.to_k(context)
|
85 |
+
v = self.to_v(context)
|
86 |
+
k_ip = self.to_k_ip(context_img)
|
87 |
+
v_ip = self.to_v_ip(context_img)
|
88 |
+
else:
|
89 |
+
k = self.to_k(context)
|
90 |
+
v = self.to_v(context)
|
91 |
+
|
92 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
93 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
94 |
+
if self.relative_position and not is_imgbatch:
|
95 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
96 |
+
k2 = self.relative_position_k(len_q, len_k)
|
97 |
+
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
|
98 |
+
sim += sim2
|
99 |
+
del k
|
100 |
+
|
101 |
+
if exists(mask):
|
102 |
+
## feasible for causal attention mask only
|
103 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
104 |
+
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
|
105 |
+
sim.masked_fill_(~(mask>0.5), max_neg_value)
|
106 |
+
|
107 |
+
# attention, what we cannot get enough of
|
108 |
+
sim = sim.softmax(dim=-1)
|
109 |
+
out = torch.einsum('b i j, b j d -> b i d', sim, v)
|
110 |
+
if self.relative_position and not is_imgbatch:
|
111 |
+
v2 = self.relative_position_v(len_q, len_v)
|
112 |
+
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
|
113 |
+
out += out2
|
114 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
115 |
+
|
116 |
+
## considering image token additionally
|
117 |
+
if context is not None and self.img_cross_attention:
|
118 |
+
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
|
119 |
+
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
|
120 |
+
del k_ip
|
121 |
+
sim_ip = sim_ip.softmax(dim=-1)
|
122 |
+
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
|
123 |
+
out_ip = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
124 |
+
out = out + self.image_cross_attention_scale * out_ip
|
125 |
+
del q
|
126 |
+
|
127 |
+
return self.to_out(out)
|
128 |
+
|
129 |
+
def efficient_forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs):
|
130 |
+
q = self.to_q(x)
|
131 |
+
context = default(context, x)
|
132 |
+
|
133 |
+
## considering image token additionally
|
134 |
+
if context is not None and self.img_cross_attention:
|
135 |
+
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
|
136 |
+
k = self.to_k(context)
|
137 |
+
v = self.to_v(context)
|
138 |
+
k_ip = self.to_k_ip(context_img)
|
139 |
+
v_ip = self.to_v_ip(context_img)
|
140 |
+
else:
|
141 |
+
k = self.to_k(context)
|
142 |
+
v = self.to_v(context)
|
143 |
+
|
144 |
+
b, _, _ = q.shape
|
145 |
+
q, k, v = map(
|
146 |
+
lambda t: t.unsqueeze(3)
|
147 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
148 |
+
.permute(0, 2, 1, 3)
|
149 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
150 |
+
.contiguous(),
|
151 |
+
(q, k, v),
|
152 |
+
)
|
153 |
+
# actually compute the attention, what we cannot get enough of
|
154 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
155 |
+
|
156 |
+
## considering image token additionally
|
157 |
+
if context is not None and self.img_cross_attention:
|
158 |
+
k_ip, v_ip = map(
|
159 |
+
lambda t: t.unsqueeze(3)
|
160 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
161 |
+
.permute(0, 2, 1, 3)
|
162 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
163 |
+
.contiguous(),
|
164 |
+
(k_ip, v_ip),
|
165 |
+
)
|
166 |
+
out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
|
167 |
+
out_ip = (
|
168 |
+
out_ip.unsqueeze(0)
|
169 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
170 |
+
.permute(0, 2, 1, 3)
|
171 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
172 |
+
)
|
173 |
+
|
174 |
+
if exists(mask):
|
175 |
+
raise NotImplementedError
|
176 |
+
out = (
|
177 |
+
out.unsqueeze(0)
|
178 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
179 |
+
.permute(0, 2, 1, 3)
|
180 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
181 |
+
)
|
182 |
+
if context is not None and self.img_cross_attention:
|
183 |
+
out = out + self.image_cross_attention_scale * out_ip
|
184 |
+
return self.to_out(out)
|
185 |
+
|
186 |
+
|
187 |
+
class BasicTransformerBlock(nn.Module):
|
188 |
+
|
189 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
190 |
+
disable_self_attn=False, attention_cls=None, img_cross_attention=False):
|
191 |
+
super().__init__()
|
192 |
+
attn_cls = CrossAttention if attention_cls is None else attention_cls
|
193 |
+
self.disable_self_attn = disable_self_attn
|
194 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
195 |
+
context_dim=context_dim if self.disable_self_attn else None)
|
196 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
197 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
198 |
+
img_cross_attention=img_cross_attention)
|
199 |
+
self.norm1 = nn.LayerNorm(dim)
|
200 |
+
self.norm2 = nn.LayerNorm(dim)
|
201 |
+
self.norm3 = nn.LayerNorm(dim)
|
202 |
+
self.checkpoint = checkpoint
|
203 |
+
|
204 |
+
def forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False):
|
205 |
+
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
|
206 |
+
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
|
207 |
+
if context is not None:
|
208 |
+
input_tuple = (x, context, None, emb, scale_scalar, is_imgbatch)
|
209 |
+
if mask is not None:
|
210 |
+
forward_mask = partial(self._forward, mask=mask, is_imgbatch=is_imgbatch)
|
211 |
+
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
|
212 |
+
if context is not None and mask is not None:
|
213 |
+
input_tuple = (x, context, mask, emb, scale_scalar, is_imgbatch)
|
214 |
+
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
|
215 |
+
|
216 |
+
def _forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False):
|
217 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x
|
218 |
+
x = self.attn2(self.norm2(x), context=context, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x
|
219 |
+
x = self.ff(self.norm3(x)) + x
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class SpatialTransformer(nn.Module):
|
224 |
+
"""
|
225 |
+
Transformer block for image-like data in spatial axis.
|
226 |
+
First, project the input (aka embedding)
|
227 |
+
and reshape to b, t, d.
|
228 |
+
Then apply standard transformer action.
|
229 |
+
Finally, reshape to image
|
230 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
|
234 |
+
use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False):
|
235 |
+
super().__init__()
|
236 |
+
self.in_channels = in_channels
|
237 |
+
inner_dim = n_heads * d_head
|
238 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
239 |
+
if not use_linear:
|
240 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
241 |
+
else:
|
242 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
243 |
+
|
244 |
+
self.transformer_blocks = nn.ModuleList([
|
245 |
+
BasicTransformerBlock(
|
246 |
+
inner_dim,
|
247 |
+
n_heads,
|
248 |
+
d_head,
|
249 |
+
dropout=dropout,
|
250 |
+
context_dim=context_dim,
|
251 |
+
img_cross_attention=img_cross_attention,
|
252 |
+
disable_self_attn=disable_self_attn,
|
253 |
+
checkpoint=use_checkpoint) for d in range(depth)
|
254 |
+
])
|
255 |
+
if not use_linear:
|
256 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
257 |
+
else:
|
258 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
259 |
+
self.use_linear = use_linear
|
260 |
+
|
261 |
+
|
262 |
+
def forward(self, x, context=None, emb=None, scale_scalar=None):
|
263 |
+
b, c, h, w = x.shape
|
264 |
+
x_in = x
|
265 |
+
x = self.norm(x)
|
266 |
+
if not self.use_linear:
|
267 |
+
x = self.proj_in(x)
|
268 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
269 |
+
if self.use_linear:
|
270 |
+
x = self.proj_in(x)
|
271 |
+
for i, block in enumerate(self.transformer_blocks):
|
272 |
+
x = block(x, context=context, emb=emb, scale_scalar=scale_scalar)
|
273 |
+
if self.use_linear:
|
274 |
+
x = self.proj_out(x)
|
275 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
276 |
+
if not self.use_linear:
|
277 |
+
x = self.proj_out(x)
|
278 |
+
return x + x_in
|
279 |
+
|
280 |
+
|
281 |
+
class TemporalTransformer(nn.Module):
|
282 |
+
"""
|
283 |
+
Transformer block for image-like data in temporal axis.
|
284 |
+
First, reshape to b, t, d.
|
285 |
+
Then apply standard transformer action.
|
286 |
+
Finally, reshape to image
|
287 |
+
"""
|
288 |
+
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
|
289 |
+
use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False,
|
290 |
+
relative_position=False, temporal_length=None):
|
291 |
+
super().__init__()
|
292 |
+
self.only_self_att = only_self_att
|
293 |
+
self.relative_position = relative_position
|
294 |
+
self.causal_attention = causal_attention
|
295 |
+
self.in_channels = in_channels
|
296 |
+
inner_dim = n_heads * d_head
|
297 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
298 |
+
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
299 |
+
if not use_linear:
|
300 |
+
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
301 |
+
else:
|
302 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
303 |
+
|
304 |
+
if relative_position:
|
305 |
+
assert(temporal_length is not None)
|
306 |
+
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
|
307 |
+
else:
|
308 |
+
attention_cls = None
|
309 |
+
if self.causal_attention:
|
310 |
+
assert(temporal_length is not None)
|
311 |
+
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
|
312 |
+
|
313 |
+
if self.only_self_att:
|
314 |
+
context_dim = None
|
315 |
+
self.transformer_blocks = nn.ModuleList([
|
316 |
+
BasicTransformerBlock(
|
317 |
+
inner_dim,
|
318 |
+
n_heads,
|
319 |
+
d_head,
|
320 |
+
dropout=dropout,
|
321 |
+
context_dim=context_dim,
|
322 |
+
attention_cls=attention_cls,
|
323 |
+
checkpoint=use_checkpoint) for d in range(depth)
|
324 |
+
])
|
325 |
+
if not use_linear:
|
326 |
+
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
|
327 |
+
else:
|
328 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
329 |
+
self.use_linear = use_linear
|
330 |
+
|
331 |
+
def forward(self, x, context=None, is_imgbatch=False, emb=None):
|
332 |
+
b, c, t, h, w = x.shape
|
333 |
+
x_in = x
|
334 |
+
x = self.norm(x)
|
335 |
+
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
|
336 |
+
if not self.use_linear:
|
337 |
+
x = self.proj_in(x)
|
338 |
+
x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
|
339 |
+
if self.use_linear:
|
340 |
+
x = self.proj_in(x)
|
341 |
+
|
342 |
+
if is_imgbatch:
|
343 |
+
maks = torch.eye(t).unsqueeze(0)
|
344 |
+
maks = maks.to(x.device)
|
345 |
+
maks = repeat(maks, 'l i j -> (l bhw) i j', bhw=b*h*w)
|
346 |
+
elif self.causal_attention:
|
347 |
+
mask = self.mask.to(x.device)
|
348 |
+
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
|
349 |
+
else:
|
350 |
+
mask = None
|
351 |
+
|
352 |
+
if self.only_self_att:
|
353 |
+
## note: if no context is given, cross-attention defaults to self-attention
|
354 |
+
for i, block in enumerate(self.transformer_blocks):
|
355 |
+
x = block(x, mask=mask)
|
356 |
+
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
|
357 |
+
else:
|
358 |
+
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
|
359 |
+
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
|
360 |
+
for i, block in enumerate(self.transformer_blocks):
|
361 |
+
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
|
362 |
+
for j in range(b):
|
363 |
+
context_j = repeat(
|
364 |
+
context[j],
|
365 |
+
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
|
366 |
+
## note: causal mask will not applied in cross-attention case
|
367 |
+
x[j] = block(x[j], context=context_j, is_imgbatch=is_imgbatch)
|
368 |
+
|
369 |
+
if self.use_linear:
|
370 |
+
x = self.proj_out(x)
|
371 |
+
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
|
372 |
+
if not self.use_linear:
|
373 |
+
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
|
374 |
+
x = self.proj_out(x)
|
375 |
+
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
|
376 |
+
|
377 |
+
return x + x_in
|
378 |
+
|
379 |
+
|
380 |
+
class GEGLU(nn.Module):
|
381 |
+
def __init__(self, dim_in, dim_out):
|
382 |
+
super().__init__()
|
383 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
384 |
+
|
385 |
+
def forward(self, x):
|
386 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
387 |
+
return x * F.gelu(gate)
|
388 |
+
|
389 |
+
|
390 |
+
class FeedForward(nn.Module):
|
391 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
392 |
+
super().__init__()
|
393 |
+
inner_dim = int(dim * mult)
|
394 |
+
dim_out = default(dim_out, dim)
|
395 |
+
project_in = nn.Sequential(
|
396 |
+
nn.Linear(dim, inner_dim),
|
397 |
+
nn.GELU()
|
398 |
+
) if not glu else GEGLU(dim, inner_dim)
|
399 |
+
|
400 |
+
self.net = nn.Sequential(
|
401 |
+
project_in,
|
402 |
+
nn.Dropout(dropout),
|
403 |
+
nn.Linear(inner_dim, dim_out)
|
404 |
+
)
|
405 |
+
|
406 |
+
def forward(self, x):
|
407 |
+
return self.net(x)
|
408 |
+
|
409 |
+
|
410 |
+
class LinearAttention(nn.Module):
|
411 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
412 |
+
super().__init__()
|
413 |
+
self.heads = heads
|
414 |
+
hidden_dim = dim_head * heads
|
415 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
416 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
417 |
+
|
418 |
+
def forward(self, x):
|
419 |
+
b, c, h, w = x.shape
|
420 |
+
qkv = self.to_qkv(x)
|
421 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
422 |
+
k = k.softmax(dim=-1)
|
423 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
424 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
425 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
426 |
+
return self.to_out(out)
|
427 |
+
|
428 |
+
|
429 |
+
class SpatialSelfAttention(nn.Module):
|
430 |
+
def __init__(self, in_channels):
|
431 |
+
super().__init__()
|
432 |
+
self.in_channels = in_channels
|
433 |
+
|
434 |
+
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
435 |
+
self.q = torch.nn.Conv2d(in_channels,
|
436 |
+
in_channels,
|
437 |
+
kernel_size=1,
|
438 |
+
stride=1,
|
439 |
+
padding=0)
|
440 |
+
self.k = torch.nn.Conv2d(in_channels,
|
441 |
+
in_channels,
|
442 |
+
kernel_size=1,
|
443 |
+
stride=1,
|
444 |
+
padding=0)
|
445 |
+
self.v = torch.nn.Conv2d(in_channels,
|
446 |
+
in_channels,
|
447 |
+
kernel_size=1,
|
448 |
+
stride=1,
|
449 |
+
padding=0)
|
450 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
451 |
+
in_channels,
|
452 |
+
kernel_size=1,
|
453 |
+
stride=1,
|
454 |
+
padding=0)
|
455 |
+
|
456 |
+
def forward(self, x):
|
457 |
+
h_ = x
|
458 |
+
h_ = self.norm(h_)
|
459 |
+
q = self.q(h_)
|
460 |
+
k = self.k(h_)
|
461 |
+
v = self.v(h_)
|
462 |
+
|
463 |
+
# compute attention
|
464 |
+
b,c,h,w = q.shape
|
465 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
466 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
467 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
468 |
+
|
469 |
+
w_ = w_ * (int(c)**(-0.5))
|
470 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
471 |
+
|
472 |
+
# attend to values
|
473 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
474 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
475 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
476 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
477 |
+
h_ = self.proj_out(h_)
|
478 |
+
|
479 |
+
return x+h_
|
480 |
+
|
481 |
+
|
482 |
+
class CrossAttentionProcessor(nn.Module):
|
483 |
+
def forward(self, attn, x, context=None, mask=None, is_imgbatch=False):
|
484 |
+
h = attn.heads
|
485 |
+
q = attn.to_q(x)
|
486 |
+
context = default(context, x)
|
487 |
+
k = attn.to_k(context)
|
488 |
+
v = attn.to_v(context)
|
489 |
+
|
490 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
491 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
|
492 |
+
if attn.relative_position and not is_imgbatch:
|
493 |
+
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
|
494 |
+
k2 = attn.relative_position_k(len_q, len_k)
|
495 |
+
sim2 = einsum('b t d, t s d -> b t s', q, k2) * attn.scale # TODO check
|
496 |
+
sim += sim2
|
497 |
+
del q, k
|
498 |
+
|
499 |
+
if exists(mask):
|
500 |
+
raise NotImplementedError
|
501 |
+
|
502 |
+
# attention, what we cannot get enough of
|
503 |
+
sim = sim.softmax(dim=-1)
|
504 |
+
|
505 |
+
out = torch.einsum('b i j, b j d -> b i d', sim, v)
|
506 |
+
if attn.relative_position and not is_imgbatch:
|
507 |
+
v2 = attn.relative_position_v(len_q, len_v)
|
508 |
+
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
|
509 |
+
out += out2
|
510 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
511 |
+
return attn.to_out(out)
|
512 |
+
|
513 |
+
def efficient_forward(self, attn, x, context=None, mask=None, **kwargs):
|
514 |
+
q = attn.to_q(x)
|
515 |
+
context = default(context, x)
|
516 |
+
k = attn.to_k(context)
|
517 |
+
v = attn.to_v(context)
|
518 |
+
|
519 |
+
b, _, _ = q.shape
|
520 |
+
|
521 |
+
q, k, v = map(
|
522 |
+
lambda t: t.unsqueeze(3)
|
523 |
+
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
|
524 |
+
.permute(0, 2, 1, 3)
|
525 |
+
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
|
526 |
+
.contiguous(),
|
527 |
+
(q, k, v),
|
528 |
+
)
|
529 |
+
# actually compute the attention, what we cannot get enough of
|
530 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
531 |
+
|
532 |
+
if exists(mask):
|
533 |
+
raise NotImplementedError
|
534 |
+
out = (
|
535 |
+
out.unsqueeze(0)
|
536 |
+
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
|
537 |
+
.permute(0, 2, 1, 3)
|
538 |
+
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
|
539 |
+
)
|
540 |
+
return attn.to_out(out)
|
541 |
+
|
542 |
+
def __call__(self, **kwargs):
|
543 |
+
if XFORMERS_IS_AVAILBLE:
|
544 |
+
return self.efficient_forward(**kwargs)
|
545 |
+
else:
|
546 |
+
return self.forward(**kwargs)
|
547 |
+
|
548 |
+
|
549 |
+
def register_attn_processor(unet):
|
550 |
+
Attn_processor = {}
|
551 |
+
def attn_forward(self):
|
552 |
+
assert hasattr(self, "processor")
|
553 |
+
def forward(x, context=None, mask=None, **kwargs):
|
554 |
+
return self.processor(self, x, context, mask, **kwargs)
|
555 |
+
|
556 |
+
return forward
|
557 |
+
|
558 |
+
def register_recr_in_block(net_, name):
|
559 |
+
"""
|
560 |
+
find and register cross attention in the SpatialTransformer block
|
561 |
+
assert only one cross attention in each block
|
562 |
+
"""
|
563 |
+
if net_.__class__.__name__ == 'BasicTransformerBlock':
|
564 |
+
processor_name = f"{name}.attn2.processor"
|
565 |
+
net_.attn2.processor = CrossAttentionProcessor()
|
566 |
+
net_.attn2.forward = attn_forward(net_.attn2)
|
567 |
+
Attn_processor.update({processor_name: net_.attn2.processor})
|
568 |
+
print(f"Register Attention Processor in {processor_name} successfully!")
|
569 |
+
elif hasattr(net_, 'children'):
|
570 |
+
for sub_name, net in net_.named_children():
|
571 |
+
register_recr_in_block(net, f"{name}.{sub_name}")
|
572 |
+
return
|
573 |
+
|
574 |
+
def register_recr(net_, name):
|
575 |
+
# find SpatialTransformer block
|
576 |
+
if isinstance(net_, SpatialTransformer):
|
577 |
+
register_recr_in_block(net_, name)
|
578 |
+
elif hasattr(net_, 'children'):
|
579 |
+
for sub_name, net in net_.named_children():
|
580 |
+
register_recr(net, f"{name}.{sub_name}")
|
581 |
+
|
582 |
+
|
583 |
+
for name, net in unet.named_children():
|
584 |
+
register_recr(net, name)
|
585 |
+
|
586 |
+
print("==========================================")
|
587 |
+
print(f"Totally {len(Attn_processor.keys())} processors are registered successfully! hiahiahia")
|
588 |
+
|
589 |
+
return Attn_processor
|
590 |
+
|
591 |
+
|
592 |
+
def set_attn_processor(unet, processor):
|
593 |
+
|
594 |
+
def register_recr(net_, name):
|
595 |
+
if hasattr(net_, "processor"):
|
596 |
+
net_.processor = processor[f"{name}.processor"]
|
597 |
+
print(f"Set New Attention Processor in {name}.processor successfully!")
|
598 |
+
|
599 |
+
else:
|
600 |
+
for sub_name, net in net_.named_children():
|
601 |
+
register_recr(net, f"{name}.{sub_name}")
|
602 |
+
|
603 |
+
for name, net in unet.named_children():
|
604 |
+
register_recr(net, name)
|
605 |
+
|
606 |
+
return
|
607 |
+
|
608 |
+
|
609 |
+
def get_attn_processor(unet):
|
610 |
+
processor_dict = {}
|
611 |
+
def register_recr(net_, name):
|
612 |
+
if hasattr(net_, "processor"):
|
613 |
+
processor_dict[f"{name}.processor"] = net_.processor
|
614 |
+
|
615 |
+
else:
|
616 |
+
for sub_name, net in net_.named_children():
|
617 |
+
register_recr(net, f"{name}.{sub_name}")
|
618 |
+
|
619 |
+
for name, net in unet.named_children():
|
620 |
+
register_recr(net, name)
|
621 |
+
|
622 |
+
return processor_dict
|
623 |
+
|
624 |
+
|
625 |
+
class DualCrossAttnProcessor(nn.Module):
|
626 |
+
def __init__(self, context_dim, inner_dim, scale=1.0, state_dict=None, use_norm=False, layer_idx=0):
|
627 |
+
super().__init__()
|
628 |
+
self.to_k_style = nn.Linear(context_dim, inner_dim, bias=False)
|
629 |
+
self.to_v_style = nn.Linear(context_dim, inner_dim, bias=False)
|
630 |
+
self.scale = scale
|
631 |
+
self.layer_idx = layer_idx
|
632 |
+
|
633 |
+
if state_dict is not None:
|
634 |
+
self.to_k_style.load_state_dict(state_dict['k'], strict=True)
|
635 |
+
self.to_v_style.load_state_dict(state_dict['v'], strict=True)
|
636 |
+
|
637 |
+
self.use_norm = use_norm
|
638 |
+
if use_norm:
|
639 |
+
self.norm_style = nn.LayerNorm(inner_dim)
|
640 |
+
else:
|
641 |
+
self.norm_style = lambda x: x
|
642 |
+
|
643 |
+
def forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs):
|
644 |
+
h = attn.heads
|
645 |
+
q = attn.to_q(x)
|
646 |
+
context = default(context, x)
|
647 |
+
k = attn.to_k(context)
|
648 |
+
v = attn.to_v(context)
|
649 |
+
|
650 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
651 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
|
652 |
+
|
653 |
+
if exists(mask):
|
654 |
+
## feasible for causal attention mask only
|
655 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
656 |
+
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
|
657 |
+
sim.masked_fill_(~(mask>0.5), max_neg_value)
|
658 |
+
|
659 |
+
# attention, what we cannot get enough of
|
660 |
+
sim = sim.softmax(dim=-1)
|
661 |
+
|
662 |
+
out = torch.einsum('b i j, b j d -> b i d', sim, v)
|
663 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
664 |
+
|
665 |
+
# for another cross attention
|
666 |
+
if context_style is not None:
|
667 |
+
k_style = self.to_k_style(context_style)
|
668 |
+
v_style = self.to_v_style(context_style)
|
669 |
+
|
670 |
+
k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style))
|
671 |
+
sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style)
|
672 |
+
sim_style = sim_style.softmax(dim=-1)
|
673 |
+
out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style)
|
674 |
+
out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h)
|
675 |
+
|
676 |
+
out = out + out_style
|
677 |
+
|
678 |
+
return attn.to_out(out)
|
679 |
+
|
680 |
+
def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs):
|
681 |
+
q = attn.to_q(x)
|
682 |
+
context = default(context, x)
|
683 |
+
k = attn.to_k(context)
|
684 |
+
v = attn.to_v(context)
|
685 |
+
|
686 |
+
b, _, _ = q.shape
|
687 |
+
|
688 |
+
q, k, v = map(
|
689 |
+
lambda t: t.unsqueeze(3)
|
690 |
+
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
|
691 |
+
.permute(0, 2, 1, 3)
|
692 |
+
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
|
693 |
+
.contiguous(),
|
694 |
+
(q, k, v),
|
695 |
+
)
|
696 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
697 |
+
|
698 |
+
out = (
|
699 |
+
out.unsqueeze(0)
|
700 |
+
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
|
701 |
+
.permute(0, 2, 1, 3)
|
702 |
+
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
|
703 |
+
)
|
704 |
+
|
705 |
+
|
706 |
+
if context_style is not None:
|
707 |
+
k_style = self.to_k_style(context_style)
|
708 |
+
v_style = self.to_v_style(context_style)
|
709 |
+
|
710 |
+
k_style, v_style = map(
|
711 |
+
lambda t: t.unsqueeze(3)
|
712 |
+
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
|
713 |
+
.permute(0, 2, 1, 3)
|
714 |
+
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
|
715 |
+
.contiguous(),
|
716 |
+
(k_style, v_style),
|
717 |
+
)
|
718 |
+
out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None)
|
719 |
+
|
720 |
+
out_style = (
|
721 |
+
out_style.unsqueeze(0)
|
722 |
+
.reshape(b, attn.heads, out_style.shape[1], attn.dim_head)
|
723 |
+
.permute(0, 2, 1, 3)
|
724 |
+
.reshape(b, out_style.shape[1], attn.heads * attn.dim_head)
|
725 |
+
)
|
726 |
+
|
727 |
+
out = out + out_style
|
728 |
+
|
729 |
+
return attn.to_out(out)
|
730 |
+
|
731 |
+
def __call__(self, attn, x, context=None, mask=None, **kwargs):
|
732 |
+
# print("Hello! I am working!")
|
733 |
+
|
734 |
+
# separate the context
|
735 |
+
# print(context.shape)
|
736 |
+
if context.shape[1] == 77:
|
737 |
+
context_style = None
|
738 |
+
else:
|
739 |
+
context_style = context[:, 77:, :]
|
740 |
+
context = context[:, :77, :]
|
741 |
+
|
742 |
+
if XFORMERS_IS_AVAILBLE:
|
743 |
+
return self.efficient_forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs)
|
744 |
+
else:
|
745 |
+
return self.forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs)
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
class DualCrossAttnProcessorAS(DualCrossAttnProcessor):
|
750 |
+
def forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs):
|
751 |
+
h = attn.heads
|
752 |
+
q = attn.to_q(x)
|
753 |
+
context = default(context, x)
|
754 |
+
k = attn.to_k(context)
|
755 |
+
v = attn.to_v(context)
|
756 |
+
|
757 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
758 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
|
759 |
+
|
760 |
+
# attention, what we cannot get enough of
|
761 |
+
sim = sim.softmax(dim=-1)
|
762 |
+
|
763 |
+
out = torch.einsum('b i j, b j d -> b i d', sim, v)
|
764 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
765 |
+
|
766 |
+
# for another cross attention
|
767 |
+
if context_style is not None:
|
768 |
+
k_style = self.to_k_style(context_style)
|
769 |
+
v_style = self.to_v_style(context_style)
|
770 |
+
|
771 |
+
k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style))
|
772 |
+
sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style)
|
773 |
+
sim_style = sim_style.softmax(dim=-1)
|
774 |
+
out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style)
|
775 |
+
out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h)
|
776 |
+
|
777 |
+
if scale_scalar is not None:
|
778 |
+
scale = 1 + scale_scalar[:, self.layer_idx]
|
779 |
+
scale = scale[:, None]
|
780 |
+
else:
|
781 |
+
scale = 1.0
|
782 |
+
|
783 |
+
if self.use_norm:
|
784 |
+
out_style = self.norm_style(out_style)
|
785 |
+
|
786 |
+
out = out + scale * out_style * self.scale
|
787 |
+
|
788 |
+
return attn.to_out(out)
|
789 |
+
|
790 |
+
def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs):
|
791 |
+
q = attn.to_q(x)
|
792 |
+
context = default(context, x)
|
793 |
+
k = attn.to_k(context)
|
794 |
+
v = attn.to_v(context)
|
795 |
+
|
796 |
+
b, _, _ = q.shape
|
797 |
+
|
798 |
+
q, k, v = map(
|
799 |
+
lambda t: t.unsqueeze(3)
|
800 |
+
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
|
801 |
+
.permute(0, 2, 1, 3)
|
802 |
+
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
|
803 |
+
.contiguous(),
|
804 |
+
(q, k, v),
|
805 |
+
)
|
806 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
|
807 |
+
|
808 |
+
out = (
|
809 |
+
out.unsqueeze(0)
|
810 |
+
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
|
811 |
+
.permute(0, 2, 1, 3)
|
812 |
+
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
|
813 |
+
)
|
814 |
+
|
815 |
+
if context_style is not None:
|
816 |
+
k_style = self.to_k_style(context_style)
|
817 |
+
v_style = self.to_v_style(context_style)
|
818 |
+
|
819 |
+
k_style, v_style = map(
|
820 |
+
lambda t: t.unsqueeze(3)
|
821 |
+
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
|
822 |
+
.permute(0, 2, 1, 3)
|
823 |
+
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
|
824 |
+
.contiguous(),
|
825 |
+
(k_style, v_style),
|
826 |
+
)
|
827 |
+
out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None)
|
828 |
+
|
829 |
+
out_style = (
|
830 |
+
out_style.unsqueeze(0)
|
831 |
+
.reshape(b, attn.heads, out_style.shape[1], attn.dim_head)
|
832 |
+
.permute(0, 2, 1, 3)
|
833 |
+
.reshape(b, out_style.shape[1], attn.heads * attn.dim_head)
|
834 |
+
)
|
835 |
+
|
836 |
+
if scale_scalar is not None:
|
837 |
+
scale = 1 + scale_scalar[:, self.layer_idx]
|
838 |
+
scale = scale[:, None]
|
839 |
+
else:
|
840 |
+
scale = 1.0
|
841 |
+
|
842 |
+
|
843 |
+
if self.use_norm:
|
844 |
+
out_style = self.norm_style(out_style)
|
845 |
+
|
846 |
+
out = out + scale * out_style * self.scale
|
847 |
+
|
848 |
+
return attn.to_out(out)
|
849 |
+
|
850 |
+
|
851 |
+
|
lvdm/modules/encoders/__pycache__/adapter.cpython-39.pyc
ADDED
Binary file (6.75 kB). View file
|
|
lvdm/modules/encoders/__pycache__/arch_transformer.cpython-39.pyc
ADDED
Binary file (8.34 kB). View file
|
|
lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc
ADDED
Binary file (15.2 kB). View file
|
|
lvdm/modules/encoders/__pycache__/condition2.cpython-39.pyc
ADDED
Binary file (14.5 kB). View file
|
|
lvdm/modules/encoders/__pycache__/ip_resampler.cpython-39.pyc
ADDED
Binary file (3.97 kB). View file
|
|
lvdm/modules/encoders/__pycache__/transformers.cpython-39.pyc
ADDED
Binary file (8.36 kB). View file
|
|
lvdm/modules/encoders/adapter.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from collections import OrderedDict
|
4 |
+
from lvdm.basics import (
|
5 |
+
zero_module,
|
6 |
+
conv_nd,
|
7 |
+
avg_pool_nd
|
8 |
+
)
|
9 |
+
from einops import rearrange
|
10 |
+
from lvdm.modules.attention import register_attn_processor, set_attn_processor, DualCrossAttnProcessor, get_attn_processor
|
11 |
+
from lvdm.modules.attention import DualCrossAttnProcessorAS
|
12 |
+
from utils.utils import instantiate_from_config
|
13 |
+
|
14 |
+
from lvdm.modules.encoders.arch_transformer import Transformer
|
15 |
+
|
16 |
+
|
17 |
+
class StyleTransformer(nn.Module):
|
18 |
+
def __init__(self, in_dim=1024, out_dim=1024, num_heads=8, num_tokens=4, n_layers=2):
|
19 |
+
super().__init__()
|
20 |
+
scale = in_dim ** -0.5
|
21 |
+
self.num_tokens = num_tokens
|
22 |
+
self.style_emb = nn.Parameter(torch.randn(1, num_tokens, in_dim) * scale)
|
23 |
+
self.transformer_blocks = Transformer(
|
24 |
+
width=in_dim,
|
25 |
+
layers=n_layers,
|
26 |
+
heads=num_heads,
|
27 |
+
)
|
28 |
+
self.ln1 = nn.LayerNorm(in_dim)
|
29 |
+
self.ln2 = nn.LayerNorm(in_dim)
|
30 |
+
self.proj = nn.Parameter(torch.randn(in_dim, out_dim) * scale)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
style_emb = self.style_emb.repeat(x.shape[0], 1, 1)
|
34 |
+
x = torch.cat([style_emb, x], dim=1)
|
35 |
+
# x = torch.cat([x, style_emb], dim=1)
|
36 |
+
x = self.ln1(x)
|
37 |
+
|
38 |
+
x = x.permute(1, 0, 2)
|
39 |
+
x = self.transformer_blocks(x)
|
40 |
+
x = x.permute(1, 0, 2)
|
41 |
+
|
42 |
+
x = self.ln2(x[:, :self.num_tokens, :])
|
43 |
+
x = x @ self.proj
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class ScaleEncoder(nn.Module):
|
48 |
+
def __init__(self, in_dim=1024, out_dim=1, num_heads=8, num_tokens=16, n_layers=2):
|
49 |
+
super().__init__()
|
50 |
+
scale = in_dim ** -0.5
|
51 |
+
self.num_tokens = num_tokens
|
52 |
+
self.scale_emb = nn.Parameter(torch.randn(1, num_tokens, in_dim) * scale)
|
53 |
+
self.transformer_blocks = Transformer(
|
54 |
+
width=in_dim,
|
55 |
+
layers=n_layers,
|
56 |
+
heads=num_heads,
|
57 |
+
)
|
58 |
+
self.ln1 = nn.LayerNorm(in_dim)
|
59 |
+
self.ln2 = nn.LayerNorm(in_dim)
|
60 |
+
|
61 |
+
self.out = nn.Sequential(
|
62 |
+
nn.Linear(in_dim, 32),
|
63 |
+
nn.GELU(),
|
64 |
+
nn.Linear(32, out_dim),
|
65 |
+
nn.Tanh(),
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
scale_emb = self.scale_emb.repeat(x.shape[0], 1, 1)
|
70 |
+
x = torch.cat([scale_emb, x], dim=1)
|
71 |
+
x = self.ln1(x)
|
72 |
+
|
73 |
+
x = x.permute(1, 0, 2)
|
74 |
+
x = self.transformer_blocks(x)
|
75 |
+
x = x.permute(1, 0, 2)
|
76 |
+
|
77 |
+
x = self.ln2(x[:, :self.num_tokens, :])
|
78 |
+
x = self.out(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class DropPath(nn.Module):
|
83 |
+
r"""DropPath but without rescaling and supports optional all-zero and/or all-keep.
|
84 |
+
"""
|
85 |
+
def __init__(self, p):
|
86 |
+
super(DropPath, self).__init__()
|
87 |
+
self.p = p
|
88 |
+
|
89 |
+
def forward(self, *args, zero=None, keep=None):
|
90 |
+
if not self.training:
|
91 |
+
return args[0] if len(args) == 1 else args
|
92 |
+
|
93 |
+
# params
|
94 |
+
x = args[0]
|
95 |
+
b = x.size(0)
|
96 |
+
n = (torch.rand(b) < self.p).sum()
|
97 |
+
|
98 |
+
# non-zero and non-keep mask
|
99 |
+
mask = x.new_ones(b, dtype=torch.bool)
|
100 |
+
if keep is not None:
|
101 |
+
mask[keep] = False
|
102 |
+
if zero is not None:
|
103 |
+
mask[zero] = False
|
104 |
+
|
105 |
+
# drop-path index
|
106 |
+
index = torch.where(mask)[0]
|
107 |
+
index = index[torch.randperm(len(index))[:n]]
|
108 |
+
if zero is not None:
|
109 |
+
index = torch.cat([index, torch.where(zero)[0]], dim=0)
|
110 |
+
|
111 |
+
# drop-path multiplier
|
112 |
+
multiplier = x.new_ones(b)
|
113 |
+
multiplier[index] = 0.0
|
114 |
+
output = tuple(u * self.broadcast(multiplier, u) for u in args)
|
115 |
+
return output[0] if len(args) == 1 else output
|
116 |
+
|
117 |
+
def broadcast(self, src, dst):
|
118 |
+
assert src.size(0) == dst.size(0)
|
119 |
+
shape = (dst.size(0), ) + (1, ) * (dst.ndim - 1)
|
120 |
+
return src.view(shape)
|
121 |
+
|
122 |
+
|
123 |
+
class ImageContext(nn.Module):
|
124 |
+
def __init__(self, width=1024, context_dim=768, token_num=1):
|
125 |
+
super().__init__()
|
126 |
+
self.width = width
|
127 |
+
self.token_num = token_num
|
128 |
+
self.context_dim = context_dim
|
129 |
+
|
130 |
+
self.fc = nn.Sequential(
|
131 |
+
nn.Linear(context_dim, width),
|
132 |
+
nn.SiLU(),
|
133 |
+
nn.Linear(width, token_num * context_dim),
|
134 |
+
)
|
135 |
+
self.drop_path = DropPath(0.5)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
# x shape [B, C]
|
139 |
+
out = self.drop_path(self.fc(x))
|
140 |
+
out = rearrange(out, 'b (n c) -> b n c', n=self.token_num)
|
141 |
+
return out
|
142 |
+
|
143 |
+
|
144 |
+
class StyleAdapterDualAttnAS(nn.Module):
|
145 |
+
def __init__(self, image_context_config, scale_predictor_config, scale=1.0, use_norm=False, time_embed_dim=1024, mid_dim=32):
|
146 |
+
super().__init__()
|
147 |
+
self.image_context_model = instantiate_from_config(image_context_config)
|
148 |
+
self.scale_predictor = instantiate_from_config(scale_predictor_config)
|
149 |
+
self.scale = scale
|
150 |
+
self.use_norm = use_norm
|
151 |
+
self.time_embed_dim = time_embed_dim
|
152 |
+
self.mid_dim = mid_dim
|
153 |
+
|
154 |
+
def create_cross_attention_adapter(self, unet):
|
155 |
+
ori_processor = register_attn_processor(unet)
|
156 |
+
dual_attn_processor = {}
|
157 |
+
for idx, key in enumerate(ori_processor.keys()):
|
158 |
+
kv_state_dicts = {
|
159 |
+
'k': {'weight': unet.state_dict()[key[:-10] + '.to_k.weight']},
|
160 |
+
'v': {'weight': unet.state_dict()[key[:-10] + '.to_v.weight']},
|
161 |
+
}
|
162 |
+
context_dim = kv_state_dicts['k']['weight'].shape[1]
|
163 |
+
inner_dim = kv_state_dicts['k']['weight'].shape[0]
|
164 |
+
print(key, context_dim, inner_dim)
|
165 |
+
|
166 |
+
dual_attn_processor[key] = DualCrossAttnProcessorAS(
|
167 |
+
context_dim=context_dim,
|
168 |
+
inner_dim=inner_dim,
|
169 |
+
state_dict=kv_state_dicts,
|
170 |
+
scale=self.scale,
|
171 |
+
use_norm=self.use_norm,
|
172 |
+
layer_idx=idx,
|
173 |
+
)
|
174 |
+
|
175 |
+
set_attn_processor(unet, dual_attn_processor)
|
176 |
+
|
177 |
+
dual_attn_processor = {key.replace('.', '_'): value for key, value in dual_attn_processor.items()}
|
178 |
+
self.add_module('kv_attn_layers', nn.ModuleDict(dual_attn_processor))
|
179 |
+
|
180 |
+
def set_cross_attention_adapter(self, unet):
|
181 |
+
dual_attn_processor = get_attn_processor(unet)
|
182 |
+
for key in dual_attn_processor.keys():
|
183 |
+
module_key = key.replace('.', '_')
|
184 |
+
dual_attn_processor[key] = self.kv_attn_layers[module_key]
|
185 |
+
print('set', key, module_key)
|
186 |
+
set_attn_processor(unet, dual_attn_processor)
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
# x shape [B, C]
|
190 |
+
return self.image_context_model(x)
|
lvdm/modules/encoders/arch_transformer.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
import math
|
3 |
+
from typing import Callable, Optional, Sequence, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from torch.utils.checkpoint import checkpoint
|
9 |
+
|
10 |
+
class LayerNormFp32(nn.LayerNorm):
|
11 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
12 |
+
|
13 |
+
def forward(self, x: torch.Tensor):
|
14 |
+
orig_type = x.dtype
|
15 |
+
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
|
16 |
+
return x.to(orig_type)
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.LayerNorm):
|
20 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
21 |
+
|
22 |
+
def forward(self, x: torch.Tensor):
|
23 |
+
orig_type = x.dtype
|
24 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
25 |
+
return x.to(orig_type)
|
26 |
+
|
27 |
+
|
28 |
+
class QuickGELU(nn.Module):
|
29 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
return x * torch.sigmoid(1.702 * x)
|
32 |
+
|
33 |
+
|
34 |
+
class LayerScale(nn.Module):
|
35 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
36 |
+
super().__init__()
|
37 |
+
self.inplace = inplace
|
38 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
42 |
+
|
43 |
+
|
44 |
+
class PatchDropout(nn.Module):
|
45 |
+
"""
|
46 |
+
https://arxiv.org/abs/2212.00794
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, prob, exclude_first_token=True):
|
50 |
+
super().__init__()
|
51 |
+
assert 0 <= prob < 1.
|
52 |
+
self.prob = prob
|
53 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
if not self.training or self.prob == 0.:
|
57 |
+
return x
|
58 |
+
|
59 |
+
if self.exclude_first_token:
|
60 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
61 |
+
else:
|
62 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
63 |
+
|
64 |
+
batch = x.size()[0]
|
65 |
+
num_tokens = x.size()[1]
|
66 |
+
|
67 |
+
batch_indices = torch.arange(batch)
|
68 |
+
batch_indices = batch_indices[..., None]
|
69 |
+
|
70 |
+
keep_prob = 1 - self.prob
|
71 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
72 |
+
|
73 |
+
rand = torch.randn(batch, num_tokens)
|
74 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
75 |
+
|
76 |
+
x = x[batch_indices, patch_indices_keep]
|
77 |
+
|
78 |
+
if self.exclude_first_token:
|
79 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
class Attention(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
dim,
|
88 |
+
num_heads=8,
|
89 |
+
qkv_bias=True,
|
90 |
+
scaled_cosine=False,
|
91 |
+
scale_heads=False,
|
92 |
+
logit_scale_max=math.log(1. / 0.01),
|
93 |
+
attn_drop=0.,
|
94 |
+
proj_drop=0.
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.scaled_cosine = scaled_cosine
|
98 |
+
self.scale_heads = scale_heads
|
99 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
100 |
+
self.num_heads = num_heads
|
101 |
+
self.head_dim = dim // num_heads
|
102 |
+
self.scale = self.head_dim ** -0.5
|
103 |
+
self.logit_scale_max = logit_scale_max
|
104 |
+
|
105 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
106 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
107 |
+
if qkv_bias:
|
108 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
109 |
+
else:
|
110 |
+
self.in_proj_bias = None
|
111 |
+
|
112 |
+
if self.scaled_cosine:
|
113 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
114 |
+
else:
|
115 |
+
self.logit_scale = None
|
116 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
117 |
+
if self.scale_heads:
|
118 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
119 |
+
else:
|
120 |
+
self.head_scale = None
|
121 |
+
self.out_proj = nn.Linear(dim, dim)
|
122 |
+
self.out_drop = nn.Dropout(proj_drop)
|
123 |
+
|
124 |
+
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
125 |
+
L, N, C = x.shape
|
126 |
+
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
127 |
+
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
128 |
+
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
129 |
+
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
|
130 |
+
|
131 |
+
if self.logit_scale is not None:
|
132 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
133 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
134 |
+
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
135 |
+
attn = attn.view(-1, L, L)
|
136 |
+
else:
|
137 |
+
q = q * self.scale
|
138 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
139 |
+
|
140 |
+
if attn_mask is not None:
|
141 |
+
if attn_mask.dtype == torch.bool:
|
142 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
143 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
144 |
+
attn_mask = new_attn_mask
|
145 |
+
attn += attn_mask
|
146 |
+
|
147 |
+
attn = attn.softmax(dim=-1)
|
148 |
+
attn = self.attn_drop(attn)
|
149 |
+
|
150 |
+
x = torch.bmm(attn, v)
|
151 |
+
if self.head_scale is not None:
|
152 |
+
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
153 |
+
x = x.view(-1, L, C)
|
154 |
+
x = x.transpose(0, 1).reshape(L, N, C)
|
155 |
+
x = self.out_proj(x)
|
156 |
+
x = self.out_drop(x)
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class ResidualAttentionBlock(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
d_model: int,
|
164 |
+
n_head: int,
|
165 |
+
mlp_ratio: float = 4.0,
|
166 |
+
ls_init_value: float = None,
|
167 |
+
act_layer: Callable = nn.GELU,
|
168 |
+
norm_layer: Callable = LayerNorm,
|
169 |
+
is_cross_attention: bool = False,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
|
173 |
+
self.ln_1 = norm_layer(d_model)
|
174 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
175 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
176 |
+
if is_cross_attention:
|
177 |
+
self.ln_1_kv = norm_layer(d_model)
|
178 |
+
|
179 |
+
self.ln_2 = norm_layer(d_model)
|
180 |
+
mlp_width = int(d_model * mlp_ratio)
|
181 |
+
self.mlp = nn.Sequential(OrderedDict([
|
182 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
183 |
+
("gelu", act_layer()),
|
184 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
185 |
+
]))
|
186 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
187 |
+
|
188 |
+
def attention(
|
189 |
+
self,
|
190 |
+
q_x: torch.Tensor,
|
191 |
+
k_x: Optional[torch.Tensor] = None,
|
192 |
+
v_x: Optional[torch.Tensor] = None,
|
193 |
+
attn_mask: Optional[torch.Tensor] = None,
|
194 |
+
):
|
195 |
+
k_x = k_x if k_x is not None else q_x
|
196 |
+
v_x = v_x if v_x is not None else q_x
|
197 |
+
|
198 |
+
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
|
199 |
+
return self.attn(
|
200 |
+
q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
|
201 |
+
)[0]
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self,
|
205 |
+
q_x: torch.Tensor,
|
206 |
+
k_x: Optional[torch.Tensor] = None,
|
207 |
+
v_x: Optional[torch.Tensor] = None,
|
208 |
+
attn_mask: Optional[torch.Tensor] = None,
|
209 |
+
):
|
210 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
211 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
212 |
+
|
213 |
+
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
|
214 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class Transformer(nn.Module):
|
219 |
+
def __init__(
|
220 |
+
self,
|
221 |
+
width: int,
|
222 |
+
layers: int,
|
223 |
+
heads: int,
|
224 |
+
mlp_ratio: float = 4.0,
|
225 |
+
ls_init_value: float = None,
|
226 |
+
act_layer: Callable = nn.GELU,
|
227 |
+
norm_layer: Callable = LayerNorm,
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
self.width = width
|
231 |
+
self.layers = layers
|
232 |
+
self.grad_checkpointing = False
|
233 |
+
|
234 |
+
self.resblocks = nn.ModuleList([
|
235 |
+
ResidualAttentionBlock(
|
236 |
+
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer)
|
237 |
+
for _ in range(layers)
|
238 |
+
])
|
239 |
+
|
240 |
+
def get_cast_dtype(self) -> torch.dtype:
|
241 |
+
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
|
242 |
+
return self.resblocks[0].mlp.c_fc.int8_original_dtype
|
243 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
244 |
+
|
245 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
246 |
+
for r in self.resblocks:
|
247 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
248 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
249 |
+
x = checkpoint(r, x, None, None, attn_mask)
|
250 |
+
else:
|
251 |
+
x = r(x, attn_mask=attn_mask)
|
252 |
+
return x
|
lvdm/modules/encoders/condition.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.checkpoint import checkpoint
|
4 |
+
import kornia
|
5 |
+
import open_clip
|
6 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
7 |
+
from lvdm.common import autocast
|
8 |
+
from utils.utils import count_params
|
9 |
+
import os
|
10 |
+
|
11 |
+
class AbstractEncoder(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def encode(self, *args, **kwargs):
|
16 |
+
raise NotImplementedError
|
17 |
+
|
18 |
+
|
19 |
+
class IdentityEncoder(AbstractEncoder):
|
20 |
+
|
21 |
+
def encode(self, x):
|
22 |
+
return x
|
23 |
+
|
24 |
+
|
25 |
+
class ClassEmbedder(nn.Module):
|
26 |
+
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
27 |
+
super().__init__()
|
28 |
+
self.key = key
|
29 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
30 |
+
self.n_classes = n_classes
|
31 |
+
self.ucg_rate = ucg_rate
|
32 |
+
|
33 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
34 |
+
if key is None:
|
35 |
+
key = self.key
|
36 |
+
# this is for use in crossattn
|
37 |
+
c = batch[key][:, None]
|
38 |
+
if self.ucg_rate > 0. and not disable_dropout:
|
39 |
+
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
40 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
41 |
+
c = c.long()
|
42 |
+
c = self.embedding(c)
|
43 |
+
return c
|
44 |
+
|
45 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
46 |
+
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
47 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
48 |
+
uc = {self.key: uc}
|
49 |
+
return uc
|
50 |
+
|
51 |
+
|
52 |
+
def disabled_train(self, mode=True):
|
53 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
54 |
+
does not change anymore."""
|
55 |
+
return self
|
56 |
+
|
57 |
+
|
58 |
+
class FrozenT5Embedder(AbstractEncoder):
|
59 |
+
"""Uses the T5 transformer encoder for text"""
|
60 |
+
|
61 |
+
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
|
62 |
+
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
63 |
+
super().__init__()
|
64 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
65 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
66 |
+
self.device = device
|
67 |
+
self.max_length = max_length # TODO: typical value?
|
68 |
+
if freeze:
|
69 |
+
self.freeze()
|
70 |
+
|
71 |
+
def freeze(self):
|
72 |
+
self.transformer = self.transformer.eval()
|
73 |
+
# self.train = disabled_train
|
74 |
+
for param in self.parameters():
|
75 |
+
param.requires_grad = False
|
76 |
+
|
77 |
+
def forward(self, text):
|
78 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
79 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
80 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
81 |
+
outputs = self.transformer(input_ids=tokens)
|
82 |
+
|
83 |
+
z = outputs.last_hidden_state
|
84 |
+
return z
|
85 |
+
|
86 |
+
def encode(self, text):
|
87 |
+
return self(text)
|
88 |
+
|
89 |
+
|
90 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
91 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
92 |
+
LAYERS = [
|
93 |
+
"last",
|
94 |
+
"pooled",
|
95 |
+
"hidden"
|
96 |
+
]
|
97 |
+
|
98 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
99 |
+
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
100 |
+
super().__init__()
|
101 |
+
assert layer in self.LAYERS
|
102 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
103 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
104 |
+
self.device = device
|
105 |
+
self.max_length = max_length
|
106 |
+
if freeze:
|
107 |
+
self.freeze()
|
108 |
+
self.layer = layer
|
109 |
+
self.layer_idx = layer_idx
|
110 |
+
if layer == "hidden":
|
111 |
+
assert layer_idx is not None
|
112 |
+
assert 0 <= abs(layer_idx) <= 12
|
113 |
+
|
114 |
+
def freeze(self):
|
115 |
+
self.transformer = self.transformer.eval()
|
116 |
+
# self.train = disabled_train
|
117 |
+
for param in self.parameters():
|
118 |
+
param.requires_grad = False
|
119 |
+
|
120 |
+
def forward(self, text):
|
121 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
122 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
123 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
124 |
+
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
|
125 |
+
if self.layer == "last":
|
126 |
+
z = outputs.last_hidden_state
|
127 |
+
elif self.layer == "pooled":
|
128 |
+
z = outputs.pooler_output[:, None, :]
|
129 |
+
else:
|
130 |
+
z = outputs.hidden_states[self.layer_idx]
|
131 |
+
return z
|
132 |
+
|
133 |
+
def encode(self, text):
|
134 |
+
return self(text)
|
135 |
+
|
136 |
+
|
137 |
+
class ClipImageEmbedder(nn.Module):
|
138 |
+
def __init__(
|
139 |
+
self,
|
140 |
+
model,
|
141 |
+
jit=False,
|
142 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
143 |
+
antialias=True,
|
144 |
+
ucg_rate=0.
|
145 |
+
):
|
146 |
+
super().__init__()
|
147 |
+
from clip import load as load_clip
|
148 |
+
self.model, _ = load_clip(name=model, device=device, jit=jit)
|
149 |
+
|
150 |
+
self.antialias = antialias
|
151 |
+
|
152 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
153 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
154 |
+
self.ucg_rate = ucg_rate
|
155 |
+
|
156 |
+
def preprocess(self, x):
|
157 |
+
# normalize to [0,1]
|
158 |
+
x = kornia.geometry.resize(x, (224, 224),
|
159 |
+
interpolation='bicubic', align_corners=True,
|
160 |
+
antialias=self.antialias)
|
161 |
+
x = (x + 1.) / 2.
|
162 |
+
# re-normalize according to clip
|
163 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
164 |
+
return x
|
165 |
+
|
166 |
+
def forward(self, x, no_dropout=False):
|
167 |
+
# x is assumed to be in range [-1,1]
|
168 |
+
out = self.model.encode_image(self.preprocess(x))
|
169 |
+
out = out.to(x.dtype)
|
170 |
+
if self.ucg_rate > 0. and not no_dropout:
|
171 |
+
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
|
172 |
+
return out
|
173 |
+
|
174 |
+
|
175 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
176 |
+
"""
|
177 |
+
Uses the OpenCLIP transformer encoder for text
|
178 |
+
"""
|
179 |
+
LAYERS = [
|
180 |
+
# "pooled",
|
181 |
+
"last",
|
182 |
+
"penultimate"
|
183 |
+
]
|
184 |
+
|
185 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
186 |
+
freeze=True, layer="last"):
|
187 |
+
super().__init__()
|
188 |
+
assert layer in self.LAYERS
|
189 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version,)
|
190 |
+
del model.visual
|
191 |
+
self.model = model
|
192 |
+
|
193 |
+
self.device = device
|
194 |
+
self.max_length = max_length
|
195 |
+
if freeze:
|
196 |
+
self.freeze()
|
197 |
+
self.layer = layer
|
198 |
+
if self.layer == "last":
|
199 |
+
self.layer_idx = 0
|
200 |
+
elif self.layer == "penultimate":
|
201 |
+
self.layer_idx = 1
|
202 |
+
else:
|
203 |
+
raise NotImplementedError()
|
204 |
+
|
205 |
+
def freeze(self):
|
206 |
+
self.model = self.model.eval()
|
207 |
+
for param in self.parameters():
|
208 |
+
param.requires_grad = False
|
209 |
+
|
210 |
+
def forward(self, text):
|
211 |
+
self.device = self.model.positional_embedding.device
|
212 |
+
tokens = open_clip.tokenize(text)
|
213 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
214 |
+
return z
|
215 |
+
|
216 |
+
def encode_with_transformer(self, text):
|
217 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
218 |
+
x = x + self.model.positional_embedding
|
219 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
220 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
221 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
222 |
+
x = self.model.ln_final(x)
|
223 |
+
return x
|
224 |
+
|
225 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
226 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
227 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
228 |
+
break
|
229 |
+
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
230 |
+
x = checkpoint(r, x, attn_mask)
|
231 |
+
else:
|
232 |
+
x = r(x, attn_mask=attn_mask)
|
233 |
+
return x
|
234 |
+
|
235 |
+
def encode(self, text):
|
236 |
+
return self(text)
|
237 |
+
|
238 |
+
|
239 |
+
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
240 |
+
"""
|
241 |
+
Uses the OpenCLIP vision transformer encoder for images
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
245 |
+
freeze=True, layer="pooled", antialias=True, ucg_rate=0., only_cls=True, use_proj=True,
|
246 |
+
use_shuffle=False, mask_ratio=0.0):
|
247 |
+
super().__init__()
|
248 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
249 |
+
pretrained=version, )
|
250 |
+
del model.transformer
|
251 |
+
self.model = model
|
252 |
+
self.mask_ratio = mask_ratio
|
253 |
+
# self.patch_dropout = PatchDropout(prob=patch_dropout, exclude_first_token=True) if patch_dropout > 0.0 else nn.Identity()
|
254 |
+
|
255 |
+
self.device = device
|
256 |
+
self.max_length = max_length
|
257 |
+
if freeze:
|
258 |
+
self.freeze()
|
259 |
+
self.layer = layer
|
260 |
+
if self.layer == "penultimate":
|
261 |
+
raise NotImplementedError()
|
262 |
+
self.layer_idx = 1
|
263 |
+
|
264 |
+
self.antialias = antialias
|
265 |
+
|
266 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
267 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
268 |
+
self.ucg_rate = ucg_rate
|
269 |
+
self.only_cls = only_cls
|
270 |
+
self.use_proj = use_proj
|
271 |
+
self.use_shuffle = use_shuffle
|
272 |
+
|
273 |
+
def preprocess(self, x):
|
274 |
+
# normalize to [0,1]
|
275 |
+
x = kornia.geometry.resize(x, (224, 224),
|
276 |
+
interpolation='bicubic', align_corners=True,
|
277 |
+
antialias=self.antialias)
|
278 |
+
x = (x + 1.) / 2.
|
279 |
+
# renormalize according to clip
|
280 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
281 |
+
return x
|
282 |
+
|
283 |
+
def freeze(self):
|
284 |
+
self.model = self.model.eval()
|
285 |
+
for param in self.parameters():
|
286 |
+
param.requires_grad = False
|
287 |
+
|
288 |
+
@autocast
|
289 |
+
def forward(self, image, use_shuffle=False, drop_prob=None):
|
290 |
+
with torch.no_grad():
|
291 |
+
z = self.encode_with_vision_transformer(image, use_shuffle, drop_prob)
|
292 |
+
return z.detach().half()
|
293 |
+
|
294 |
+
@torch.no_grad()
|
295 |
+
def encode_with_vision_transformer(self, img, use_shuffle=False, mask_ratio=None):
|
296 |
+
if mask_ratio is None:
|
297 |
+
mask_ratio = self.mask_ratio
|
298 |
+
assert 0 <= mask_ratio < 1.
|
299 |
+
|
300 |
+
x = self.preprocess(img)
|
301 |
+
|
302 |
+
assert not self.model.visual.input_patchnorm
|
303 |
+
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
|
304 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
305 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
306 |
+
|
307 |
+
# shuffle
|
308 |
+
if use_shuffle:
|
309 |
+
x = x[:, torch.randperm(x.shape[1]), :]
|
310 |
+
|
311 |
+
# class embeddings and positional embeddings
|
312 |
+
x = torch.cat(
|
313 |
+
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
314 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
315 |
+
x = x + self.model.visual.positional_embedding.to(x.dtype)
|
316 |
+
|
317 |
+
# patch dropout
|
318 |
+
x = self.random_masking(x, mask_ratio, exclude_first_token=True)
|
319 |
+
|
320 |
+
x = self.model.visual.ln_pre(x)
|
321 |
+
|
322 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
323 |
+
x = self.model.visual.transformer(x)
|
324 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
325 |
+
|
326 |
+
assert self.model.visual.attn_pool is None
|
327 |
+
pooled, tokens = self.model.visual._global_pool(x)
|
328 |
+
pooled = self.model.visual.ln_post(pooled)
|
329 |
+
|
330 |
+
if self.model.visual.proj is not None and self.use_proj:
|
331 |
+
pooled = pooled @ self.model.visual.proj
|
332 |
+
|
333 |
+
if self.only_cls:
|
334 |
+
out = pooled.unsqueeze(1)
|
335 |
+
else:
|
336 |
+
out = torch.cat([pooled.unsqueeze(1), tokens], dim=1)
|
337 |
+
return out
|
338 |
+
|
339 |
+
def encode(self, text):
|
340 |
+
return self(text)
|
341 |
+
|
342 |
+
def random_masking(self, x, mask_ratio, exclude_first_token=True):
|
343 |
+
if mask_ratio == 0.:
|
344 |
+
return x
|
345 |
+
|
346 |
+
N, L, D = x.shape
|
347 |
+
if exclude_first_token:
|
348 |
+
L = L - 1
|
349 |
+
|
350 |
+
len_keep = int(L * (1 - mask_ratio))
|
351 |
+
noise = torch.rand(N, L, device=x.device)
|
352 |
+
|
353 |
+
# sort noise for each sample
|
354 |
+
ids_shuffle = torch.argsort(noise, dim=1)
|
355 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1)
|
356 |
+
|
357 |
+
# keep the first subset
|
358 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
359 |
+
if exclude_first_token:
|
360 |
+
ids_keep = ids_keep + 1
|
361 |
+
ids_keep = torch.cat([torch.zeros(N, 1, device=x.device, dtype=torch.long), ids_keep], dim=1)
|
362 |
+
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
|
363 |
+
|
364 |
+
return x_masked
|
365 |
+
|
366 |
+
|
367 |
+
class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
|
368 |
+
"""
|
369 |
+
Uses the OpenCLIP vision transformer encoder for images
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda",
|
373 |
+
freeze=True, layer="pooled", antialias=True):
|
374 |
+
super().__init__()
|
375 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
376 |
+
pretrained=version, )
|
377 |
+
del model.transformer
|
378 |
+
self.model = model
|
379 |
+
self.device = device
|
380 |
+
|
381 |
+
if freeze:
|
382 |
+
self.freeze()
|
383 |
+
self.layer = layer
|
384 |
+
if self.layer == "penultimate":
|
385 |
+
raise NotImplementedError()
|
386 |
+
self.layer_idx = 1
|
387 |
+
|
388 |
+
self.antialias = antialias
|
389 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
390 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
391 |
+
|
392 |
+
|
393 |
+
def preprocess(self, x):
|
394 |
+
# normalize to [0,1]
|
395 |
+
x = kornia.geometry.resize(x, (224, 224),
|
396 |
+
interpolation='bicubic', align_corners=True,
|
397 |
+
antialias=self.antialias)
|
398 |
+
x = (x + 1.) / 2.
|
399 |
+
# renormalize according to clip
|
400 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
401 |
+
return x
|
402 |
+
|
403 |
+
def freeze(self):
|
404 |
+
self.model = self.model.eval()
|
405 |
+
for param in self.model.parameters():
|
406 |
+
param.requires_grad = False
|
407 |
+
|
408 |
+
def forward(self, image, no_dropout=False):
|
409 |
+
## image: b c h w
|
410 |
+
z = self.encode_with_vision_transformer(image)
|
411 |
+
return z
|
412 |
+
|
413 |
+
def encode_with_vision_transformer(self, x):
|
414 |
+
x = self.preprocess(x)
|
415 |
+
|
416 |
+
# to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
|
417 |
+
if self.model.visual.input_patchnorm:
|
418 |
+
# einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
|
419 |
+
x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
|
420 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
421 |
+
x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
|
422 |
+
x = self.model.visual.patchnorm_pre_ln(x)
|
423 |
+
x = self.model.visual.conv1(x)
|
424 |
+
else:
|
425 |
+
x = self.model.visual.conv1(x) # shape = [*, width, grid, grid]
|
426 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
427 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
428 |
+
|
429 |
+
# class embeddings and positional embeddings
|
430 |
+
x = torch.cat(
|
431 |
+
[self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
432 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
433 |
+
x = x + self.model.visual.positional_embedding.to(x.dtype)
|
434 |
+
|
435 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
436 |
+
x = self.model.visual.patch_dropout(x)
|
437 |
+
x = self.model.visual.ln_pre(x)
|
438 |
+
|
439 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
440 |
+
x = self.model.visual.transformer(x)
|
441 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
442 |
+
|
443 |
+
return x
|
444 |
+
|
445 |
+
|
446 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
447 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
448 |
+
clip_max_length=77, t5_max_length=77):
|
449 |
+
super().__init__()
|
450 |
+
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
451 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
452 |
+
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
453 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
|
454 |
+
|
455 |
+
def encode(self, text):
|
456 |
+
return self(text)
|
457 |
+
|
458 |
+
def forward(self, text):
|
459 |
+
clip_z = self.clip_encoder.encode(text)
|
460 |
+
t5_z = self.t5_encoder.encode(text)
|
461 |
+
return [clip_z, t5_z]
|
lvdm/modules/encoders/ip_resampler.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ImageProjModel(nn.Module):
|
8 |
+
"""Projection Model"""
|
9 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
10 |
+
super().__init__()
|
11 |
+
self.cross_attention_dim = cross_attention_dim
|
12 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
13 |
+
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
14 |
+
self.norm = nn.LayerNorm(cross_attention_dim)
|
15 |
+
|
16 |
+
def forward(self, image_embeds):
|
17 |
+
#embeds = image_embeds
|
18 |
+
embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
|
19 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
20 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
21 |
+
return clip_extra_context_tokens
|
22 |
+
|
23 |
+
# FFN
|
24 |
+
def FeedForward(dim, mult=4):
|
25 |
+
inner_dim = int(dim * mult)
|
26 |
+
return nn.Sequential(
|
27 |
+
nn.LayerNorm(dim),
|
28 |
+
nn.Linear(dim, inner_dim, bias=False),
|
29 |
+
nn.GELU(),
|
30 |
+
nn.Linear(inner_dim, dim, bias=False),
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def reshape_tensor(x, heads):
|
35 |
+
bs, length, width = x.shape
|
36 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
37 |
+
x = x.view(bs, length, heads, -1)
|
38 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
39 |
+
x = x.transpose(1, 2)
|
40 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
41 |
+
x = x.reshape(bs, heads, length, -1)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
class PerceiverAttention(nn.Module):
|
46 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
47 |
+
super().__init__()
|
48 |
+
self.scale = dim_head**-0.5
|
49 |
+
self.dim_head = dim_head
|
50 |
+
self.heads = heads
|
51 |
+
inner_dim = dim_head * heads
|
52 |
+
|
53 |
+
self.norm1 = nn.LayerNorm(dim)
|
54 |
+
self.norm2 = nn.LayerNorm(dim)
|
55 |
+
|
56 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
57 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
58 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
59 |
+
|
60 |
+
|
61 |
+
def forward(self, x, latents):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
x (torch.Tensor): image features
|
65 |
+
shape (b, n1, D)
|
66 |
+
latent (torch.Tensor): latent features
|
67 |
+
shape (b, n2, D)
|
68 |
+
"""
|
69 |
+
x = self.norm1(x)
|
70 |
+
latents = self.norm2(latents)
|
71 |
+
|
72 |
+
b, l, _ = latents.shape
|
73 |
+
|
74 |
+
q = self.to_q(latents)
|
75 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
76 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
77 |
+
|
78 |
+
q = reshape_tensor(q, self.heads)
|
79 |
+
k = reshape_tensor(k, self.heads)
|
80 |
+
v = reshape_tensor(v, self.heads)
|
81 |
+
|
82 |
+
# attention
|
83 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
84 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
85 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
86 |
+
out = weight @ v
|
87 |
+
|
88 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
89 |
+
|
90 |
+
return self.to_out(out)
|
91 |
+
|
92 |
+
|
93 |
+
class Resampler(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
dim=1024,
|
97 |
+
depth=8,
|
98 |
+
dim_head=64,
|
99 |
+
heads=16,
|
100 |
+
num_queries=8,
|
101 |
+
embedding_dim=768,
|
102 |
+
output_dim=1024,
|
103 |
+
ff_mult=4,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
108 |
+
|
109 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
110 |
+
|
111 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
112 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
113 |
+
|
114 |
+
self.layers = nn.ModuleList([])
|
115 |
+
for _ in range(depth):
|
116 |
+
self.layers.append(
|
117 |
+
nn.ModuleList(
|
118 |
+
[
|
119 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
120 |
+
FeedForward(dim=dim, mult=ff_mult),
|
121 |
+
]
|
122 |
+
)
|
123 |
+
)
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
|
127 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
128 |
+
|
129 |
+
x = self.proj_in(x)
|
130 |
+
|
131 |
+
for attn, ff in self.layers:
|
132 |
+
latents = attn(x, latents) + latents
|
133 |
+
latents = ff(latents) + latents
|
134 |
+
|
135 |
+
latents = self.proj_out(latents)
|
136 |
+
return self.norm_out(latents)
|
lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc
ADDED
Binary file (20.5 kB). View file
|
|
lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc
ADDED
Binary file (15.6 kB). View file
|
|
lvdm/modules/networks/ae_modules.py
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
from utils.utils import instantiate_from_config
|
8 |
+
from lvdm.modules.attention import LinearAttention
|
9 |
+
|
10 |
+
def nonlinearity(x):
|
11 |
+
# swish
|
12 |
+
return x*torch.sigmoid(x)
|
13 |
+
|
14 |
+
|
15 |
+
def Normalize(in_channels, num_groups=32):
|
16 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
class LinAttnBlock(LinearAttention):
|
21 |
+
"""to match AttnBlock usage"""
|
22 |
+
def __init__(self, in_channels):
|
23 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
24 |
+
|
25 |
+
|
26 |
+
class AttnBlock(nn.Module):
|
27 |
+
def __init__(self, in_channels):
|
28 |
+
super().__init__()
|
29 |
+
self.in_channels = in_channels
|
30 |
+
|
31 |
+
self.norm = Normalize(in_channels)
|
32 |
+
self.q = torch.nn.Conv2d(in_channels,
|
33 |
+
in_channels,
|
34 |
+
kernel_size=1,
|
35 |
+
stride=1,
|
36 |
+
padding=0)
|
37 |
+
self.k = torch.nn.Conv2d(in_channels,
|
38 |
+
in_channels,
|
39 |
+
kernel_size=1,
|
40 |
+
stride=1,
|
41 |
+
padding=0)
|
42 |
+
self.v = torch.nn.Conv2d(in_channels,
|
43 |
+
in_channels,
|
44 |
+
kernel_size=1,
|
45 |
+
stride=1,
|
46 |
+
padding=0)
|
47 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=1,
|
50 |
+
stride=1,
|
51 |
+
padding=0)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
h_ = x
|
55 |
+
h_ = self.norm(h_)
|
56 |
+
q = self.q(h_)
|
57 |
+
k = self.k(h_)
|
58 |
+
v = self.v(h_)
|
59 |
+
|
60 |
+
# compute attention
|
61 |
+
b,c,h,w = q.shape
|
62 |
+
q = q.reshape(b,c,h*w) # bcl
|
63 |
+
q = q.permute(0,2,1) # bcl -> blc l=hw
|
64 |
+
k = k.reshape(b,c,h*w) # bcl
|
65 |
+
|
66 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
67 |
+
w_ = w_ * (int(c)**(-0.5))
|
68 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
69 |
+
|
70 |
+
# attend to values
|
71 |
+
v = v.reshape(b,c,h*w)
|
72 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
73 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
74 |
+
h_ = h_.reshape(b,c,h,w)
|
75 |
+
|
76 |
+
h_ = self.proj_out(h_)
|
77 |
+
|
78 |
+
return x+h_
|
79 |
+
|
80 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
81 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
82 |
+
#print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
83 |
+
if attn_type == "vanilla":
|
84 |
+
return AttnBlock(in_channels)
|
85 |
+
elif attn_type == "none":
|
86 |
+
return nn.Identity(in_channels)
|
87 |
+
else:
|
88 |
+
return LinAttnBlock(in_channels)
|
89 |
+
|
90 |
+
class Downsample(nn.Module):
|
91 |
+
def __init__(self, in_channels, with_conv):
|
92 |
+
super().__init__()
|
93 |
+
self.with_conv = with_conv
|
94 |
+
self.in_channels = in_channels
|
95 |
+
if self.with_conv:
|
96 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
97 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
98 |
+
in_channels,
|
99 |
+
kernel_size=3,
|
100 |
+
stride=2,
|
101 |
+
padding=0)
|
102 |
+
def forward(self, x):
|
103 |
+
if self.with_conv:
|
104 |
+
pad = (0,1,0,1)
|
105 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
106 |
+
x = self.conv(x)
|
107 |
+
else:
|
108 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
109 |
+
return x
|
110 |
+
|
111 |
+
class Upsample(nn.Module):
|
112 |
+
def __init__(self, in_channels, with_conv):
|
113 |
+
super().__init__()
|
114 |
+
self.with_conv = with_conv
|
115 |
+
self.in_channels = in_channels
|
116 |
+
if self.with_conv:
|
117 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
118 |
+
in_channels,
|
119 |
+
kernel_size=3,
|
120 |
+
stride=1,
|
121 |
+
padding=1)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
125 |
+
if self.with_conv:
|
126 |
+
x = self.conv(x)
|
127 |
+
return x
|
128 |
+
|
129 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
130 |
+
"""
|
131 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
132 |
+
From Fairseq.
|
133 |
+
Build sinusoidal embeddings.
|
134 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
135 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
136 |
+
"""
|
137 |
+
assert len(timesteps.shape) == 1
|
138 |
+
|
139 |
+
half_dim = embedding_dim // 2
|
140 |
+
emb = math.log(10000) / (half_dim - 1)
|
141 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
142 |
+
emb = emb.to(device=timesteps.device)
|
143 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
144 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
145 |
+
if embedding_dim % 2 == 1: # zero pad
|
146 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
147 |
+
return emb
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
class ResnetBlock(nn.Module):
|
152 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
153 |
+
dropout, temb_channels=512):
|
154 |
+
super().__init__()
|
155 |
+
self.in_channels = in_channels
|
156 |
+
out_channels = in_channels if out_channels is None else out_channels
|
157 |
+
self.out_channels = out_channels
|
158 |
+
self.use_conv_shortcut = conv_shortcut
|
159 |
+
|
160 |
+
self.norm1 = Normalize(in_channels)
|
161 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
162 |
+
out_channels,
|
163 |
+
kernel_size=3,
|
164 |
+
stride=1,
|
165 |
+
padding=1)
|
166 |
+
if temb_channels > 0:
|
167 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
168 |
+
out_channels)
|
169 |
+
self.norm2 = Normalize(out_channels)
|
170 |
+
self.dropout = torch.nn.Dropout(dropout)
|
171 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
172 |
+
out_channels,
|
173 |
+
kernel_size=3,
|
174 |
+
stride=1,
|
175 |
+
padding=1)
|
176 |
+
if self.in_channels != self.out_channels:
|
177 |
+
if self.use_conv_shortcut:
|
178 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
179 |
+
out_channels,
|
180 |
+
kernel_size=3,
|
181 |
+
stride=1,
|
182 |
+
padding=1)
|
183 |
+
else:
|
184 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
185 |
+
out_channels,
|
186 |
+
kernel_size=1,
|
187 |
+
stride=1,
|
188 |
+
padding=0)
|
189 |
+
|
190 |
+
def forward(self, x, temb):
|
191 |
+
h = x
|
192 |
+
h = self.norm1(h)
|
193 |
+
h = nonlinearity(h)
|
194 |
+
h = self.conv1(h)
|
195 |
+
|
196 |
+
if temb is not None:
|
197 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
198 |
+
|
199 |
+
h = self.norm2(h)
|
200 |
+
h = nonlinearity(h)
|
201 |
+
h = self.dropout(h)
|
202 |
+
h = self.conv2(h)
|
203 |
+
|
204 |
+
if self.in_channels != self.out_channels:
|
205 |
+
if self.use_conv_shortcut:
|
206 |
+
x = self.conv_shortcut(x)
|
207 |
+
else:
|
208 |
+
x = self.nin_shortcut(x)
|
209 |
+
|
210 |
+
return x+h
|
211 |
+
|
212 |
+
class Model(nn.Module):
|
213 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
214 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
215 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
216 |
+
super().__init__()
|
217 |
+
if use_linear_attn: attn_type = "linear"
|
218 |
+
self.ch = ch
|
219 |
+
self.temb_ch = self.ch*4
|
220 |
+
self.num_resolutions = len(ch_mult)
|
221 |
+
self.num_res_blocks = num_res_blocks
|
222 |
+
self.resolution = resolution
|
223 |
+
self.in_channels = in_channels
|
224 |
+
|
225 |
+
self.use_timestep = use_timestep
|
226 |
+
if self.use_timestep:
|
227 |
+
# timestep embedding
|
228 |
+
self.temb = nn.Module()
|
229 |
+
self.temb.dense = nn.ModuleList([
|
230 |
+
torch.nn.Linear(self.ch,
|
231 |
+
self.temb_ch),
|
232 |
+
torch.nn.Linear(self.temb_ch,
|
233 |
+
self.temb_ch),
|
234 |
+
])
|
235 |
+
|
236 |
+
# downsampling
|
237 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
238 |
+
self.ch,
|
239 |
+
kernel_size=3,
|
240 |
+
stride=1,
|
241 |
+
padding=1)
|
242 |
+
|
243 |
+
curr_res = resolution
|
244 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
245 |
+
self.down = nn.ModuleList()
|
246 |
+
for i_level in range(self.num_resolutions):
|
247 |
+
block = nn.ModuleList()
|
248 |
+
attn = nn.ModuleList()
|
249 |
+
block_in = ch*in_ch_mult[i_level]
|
250 |
+
block_out = ch*ch_mult[i_level]
|
251 |
+
for i_block in range(self.num_res_blocks):
|
252 |
+
block.append(ResnetBlock(in_channels=block_in,
|
253 |
+
out_channels=block_out,
|
254 |
+
temb_channels=self.temb_ch,
|
255 |
+
dropout=dropout))
|
256 |
+
block_in = block_out
|
257 |
+
if curr_res in attn_resolutions:
|
258 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
259 |
+
down = nn.Module()
|
260 |
+
down.block = block
|
261 |
+
down.attn = attn
|
262 |
+
if i_level != self.num_resolutions-1:
|
263 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
264 |
+
curr_res = curr_res // 2
|
265 |
+
self.down.append(down)
|
266 |
+
|
267 |
+
# middle
|
268 |
+
self.mid = nn.Module()
|
269 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
270 |
+
out_channels=block_in,
|
271 |
+
temb_channels=self.temb_ch,
|
272 |
+
dropout=dropout)
|
273 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
274 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
275 |
+
out_channels=block_in,
|
276 |
+
temb_channels=self.temb_ch,
|
277 |
+
dropout=dropout)
|
278 |
+
|
279 |
+
# upsampling
|
280 |
+
self.up = nn.ModuleList()
|
281 |
+
for i_level in reversed(range(self.num_resolutions)):
|
282 |
+
block = nn.ModuleList()
|
283 |
+
attn = nn.ModuleList()
|
284 |
+
block_out = ch*ch_mult[i_level]
|
285 |
+
skip_in = ch*ch_mult[i_level]
|
286 |
+
for i_block in range(self.num_res_blocks+1):
|
287 |
+
if i_block == self.num_res_blocks:
|
288 |
+
skip_in = ch*in_ch_mult[i_level]
|
289 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
290 |
+
out_channels=block_out,
|
291 |
+
temb_channels=self.temb_ch,
|
292 |
+
dropout=dropout))
|
293 |
+
block_in = block_out
|
294 |
+
if curr_res in attn_resolutions:
|
295 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
296 |
+
up = nn.Module()
|
297 |
+
up.block = block
|
298 |
+
up.attn = attn
|
299 |
+
if i_level != 0:
|
300 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
301 |
+
curr_res = curr_res * 2
|
302 |
+
self.up.insert(0, up) # prepend to get consistent order
|
303 |
+
|
304 |
+
# end
|
305 |
+
self.norm_out = Normalize(block_in)
|
306 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
307 |
+
out_ch,
|
308 |
+
kernel_size=3,
|
309 |
+
stride=1,
|
310 |
+
padding=1)
|
311 |
+
|
312 |
+
def forward(self, x, t=None, context=None):
|
313 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
314 |
+
if context is not None:
|
315 |
+
# assume aligned context, cat along channel axis
|
316 |
+
x = torch.cat((x, context), dim=1)
|
317 |
+
if self.use_timestep:
|
318 |
+
# timestep embedding
|
319 |
+
assert t is not None
|
320 |
+
temb = get_timestep_embedding(t, self.ch)
|
321 |
+
temb = self.temb.dense[0](temb)
|
322 |
+
temb = nonlinearity(temb)
|
323 |
+
temb = self.temb.dense[1](temb)
|
324 |
+
else:
|
325 |
+
temb = None
|
326 |
+
|
327 |
+
# downsampling
|
328 |
+
hs = [self.conv_in(x)]
|
329 |
+
for i_level in range(self.num_resolutions):
|
330 |
+
for i_block in range(self.num_res_blocks):
|
331 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
332 |
+
if len(self.down[i_level].attn) > 0:
|
333 |
+
h = self.down[i_level].attn[i_block](h)
|
334 |
+
hs.append(h)
|
335 |
+
if i_level != self.num_resolutions-1:
|
336 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
337 |
+
|
338 |
+
# middle
|
339 |
+
h = hs[-1]
|
340 |
+
h = self.mid.block_1(h, temb)
|
341 |
+
h = self.mid.attn_1(h)
|
342 |
+
h = self.mid.block_2(h, temb)
|
343 |
+
|
344 |
+
# upsampling
|
345 |
+
for i_level in reversed(range(self.num_resolutions)):
|
346 |
+
for i_block in range(self.num_res_blocks+1):
|
347 |
+
h = self.up[i_level].block[i_block](
|
348 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
349 |
+
if len(self.up[i_level].attn) > 0:
|
350 |
+
h = self.up[i_level].attn[i_block](h)
|
351 |
+
if i_level != 0:
|
352 |
+
h = self.up[i_level].upsample(h)
|
353 |
+
|
354 |
+
# end
|
355 |
+
h = self.norm_out(h)
|
356 |
+
h = nonlinearity(h)
|
357 |
+
h = self.conv_out(h)
|
358 |
+
return h
|
359 |
+
|
360 |
+
def get_last_layer(self):
|
361 |
+
return self.conv_out.weight
|
362 |
+
|
363 |
+
|
364 |
+
class Encoder(nn.Module):
|
365 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
366 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
367 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
368 |
+
**ignore_kwargs):
|
369 |
+
super().__init__()
|
370 |
+
if use_linear_attn: attn_type = "linear"
|
371 |
+
self.ch = ch
|
372 |
+
self.temb_ch = 0
|
373 |
+
self.num_resolutions = len(ch_mult)
|
374 |
+
self.num_res_blocks = num_res_blocks
|
375 |
+
self.resolution = resolution
|
376 |
+
self.in_channels = in_channels
|
377 |
+
|
378 |
+
# downsampling
|
379 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
380 |
+
self.ch,
|
381 |
+
kernel_size=3,
|
382 |
+
stride=1,
|
383 |
+
padding=1)
|
384 |
+
|
385 |
+
curr_res = resolution
|
386 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
387 |
+
self.in_ch_mult = in_ch_mult
|
388 |
+
self.down = nn.ModuleList()
|
389 |
+
for i_level in range(self.num_resolutions):
|
390 |
+
block = nn.ModuleList()
|
391 |
+
attn = nn.ModuleList()
|
392 |
+
block_in = ch*in_ch_mult[i_level]
|
393 |
+
block_out = ch*ch_mult[i_level]
|
394 |
+
for i_block in range(self.num_res_blocks):
|
395 |
+
block.append(ResnetBlock(in_channels=block_in,
|
396 |
+
out_channels=block_out,
|
397 |
+
temb_channels=self.temb_ch,
|
398 |
+
dropout=dropout))
|
399 |
+
block_in = block_out
|
400 |
+
if curr_res in attn_resolutions:
|
401 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
402 |
+
down = nn.Module()
|
403 |
+
down.block = block
|
404 |
+
down.attn = attn
|
405 |
+
if i_level != self.num_resolutions-1:
|
406 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
407 |
+
curr_res = curr_res // 2
|
408 |
+
self.down.append(down)
|
409 |
+
|
410 |
+
# middle
|
411 |
+
self.mid = nn.Module()
|
412 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
413 |
+
out_channels=block_in,
|
414 |
+
temb_channels=self.temb_ch,
|
415 |
+
dropout=dropout)
|
416 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
417 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
418 |
+
out_channels=block_in,
|
419 |
+
temb_channels=self.temb_ch,
|
420 |
+
dropout=dropout)
|
421 |
+
|
422 |
+
# end
|
423 |
+
self.norm_out = Normalize(block_in)
|
424 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
425 |
+
2*z_channels if double_z else z_channels,
|
426 |
+
kernel_size=3,
|
427 |
+
stride=1,
|
428 |
+
padding=1)
|
429 |
+
|
430 |
+
def forward(self, x):
|
431 |
+
# timestep embedding
|
432 |
+
temb = None
|
433 |
+
|
434 |
+
# print(f'encoder-input={x.shape}')
|
435 |
+
# downsampling
|
436 |
+
hs = [self.conv_in(x)]
|
437 |
+
# print(f'encoder-conv in feat={hs[0].shape}')
|
438 |
+
for i_level in range(self.num_resolutions):
|
439 |
+
for i_block in range(self.num_res_blocks):
|
440 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
441 |
+
# print(f'encoder-down feat={h.shape}')
|
442 |
+
if len(self.down[i_level].attn) > 0:
|
443 |
+
h = self.down[i_level].attn[i_block](h)
|
444 |
+
hs.append(h)
|
445 |
+
if i_level != self.num_resolutions-1:
|
446 |
+
# print(f'encoder-downsample (input)={hs[-1].shape}')
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
# print(f'encoder-downsample (output)={hs[-1].shape}')
|
449 |
+
|
450 |
+
# middle
|
451 |
+
h = hs[-1]
|
452 |
+
h = self.mid.block_1(h, temb)
|
453 |
+
# print(f'encoder-mid1 feat={h.shape}')
|
454 |
+
h = self.mid.attn_1(h)
|
455 |
+
h = self.mid.block_2(h, temb)
|
456 |
+
# print(f'encoder-mid2 feat={h.shape}')
|
457 |
+
|
458 |
+
# end
|
459 |
+
h = self.norm_out(h)
|
460 |
+
h = nonlinearity(h)
|
461 |
+
h = self.conv_out(h)
|
462 |
+
# print(f'end feat={h.shape}')
|
463 |
+
return h
|
464 |
+
|
465 |
+
|
466 |
+
class Decoder(nn.Module):
|
467 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
468 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
469 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
470 |
+
attn_type="vanilla", **ignorekwargs):
|
471 |
+
super().__init__()
|
472 |
+
if use_linear_attn: attn_type = "linear"
|
473 |
+
self.ch = ch
|
474 |
+
self.temb_ch = 0
|
475 |
+
self.num_resolutions = len(ch_mult)
|
476 |
+
self.num_res_blocks = num_res_blocks
|
477 |
+
self.resolution = resolution
|
478 |
+
self.in_channels = in_channels
|
479 |
+
self.give_pre_end = give_pre_end
|
480 |
+
self.tanh_out = tanh_out
|
481 |
+
|
482 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
483 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
484 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
485 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
486 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
487 |
+
print("AE working on z of shape {} = {} dimensions.".format(
|
488 |
+
self.z_shape, np.prod(self.z_shape)))
|
489 |
+
|
490 |
+
# z to block_in
|
491 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
492 |
+
block_in,
|
493 |
+
kernel_size=3,
|
494 |
+
stride=1,
|
495 |
+
padding=1)
|
496 |
+
|
497 |
+
# middle
|
498 |
+
self.mid = nn.Module()
|
499 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
500 |
+
out_channels=block_in,
|
501 |
+
temb_channels=self.temb_ch,
|
502 |
+
dropout=dropout)
|
503 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
504 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
505 |
+
out_channels=block_in,
|
506 |
+
temb_channels=self.temb_ch,
|
507 |
+
dropout=dropout)
|
508 |
+
|
509 |
+
# upsampling
|
510 |
+
self.up = nn.ModuleList()
|
511 |
+
for i_level in reversed(range(self.num_resolutions)):
|
512 |
+
block = nn.ModuleList()
|
513 |
+
attn = nn.ModuleList()
|
514 |
+
block_out = ch*ch_mult[i_level]
|
515 |
+
for i_block in range(self.num_res_blocks+1):
|
516 |
+
block.append(ResnetBlock(in_channels=block_in,
|
517 |
+
out_channels=block_out,
|
518 |
+
temb_channels=self.temb_ch,
|
519 |
+
dropout=dropout))
|
520 |
+
block_in = block_out
|
521 |
+
if curr_res in attn_resolutions:
|
522 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
523 |
+
up = nn.Module()
|
524 |
+
up.block = block
|
525 |
+
up.attn = attn
|
526 |
+
if i_level != 0:
|
527 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
528 |
+
curr_res = curr_res * 2
|
529 |
+
self.up.insert(0, up) # prepend to get consistent order
|
530 |
+
|
531 |
+
# end
|
532 |
+
self.norm_out = Normalize(block_in)
|
533 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
534 |
+
out_ch,
|
535 |
+
kernel_size=3,
|
536 |
+
stride=1,
|
537 |
+
padding=1)
|
538 |
+
|
539 |
+
def forward(self, z):
|
540 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
541 |
+
self.last_z_shape = z.shape
|
542 |
+
|
543 |
+
# print(f'decoder-input={z.shape}')
|
544 |
+
# timestep embedding
|
545 |
+
temb = None
|
546 |
+
|
547 |
+
# z to block_in
|
548 |
+
h = self.conv_in(z)
|
549 |
+
# print(f'decoder-conv in feat={h.shape}')
|
550 |
+
|
551 |
+
# middle
|
552 |
+
h = self.mid.block_1(h, temb)
|
553 |
+
h = self.mid.attn_1(h)
|
554 |
+
h = self.mid.block_2(h, temb)
|
555 |
+
# print(f'decoder-mid feat={h.shape}')
|
556 |
+
|
557 |
+
# upsampling
|
558 |
+
for i_level in reversed(range(self.num_resolutions)):
|
559 |
+
for i_block in range(self.num_res_blocks+1):
|
560 |
+
h = self.up[i_level].block[i_block](h, temb)
|
561 |
+
if len(self.up[i_level].attn) > 0:
|
562 |
+
h = self.up[i_level].attn[i_block](h)
|
563 |
+
# print(f'decoder-up feat={h.shape}')
|
564 |
+
if i_level != 0:
|
565 |
+
h = self.up[i_level].upsample(h)
|
566 |
+
# print(f'decoder-upsample feat={h.shape}')
|
567 |
+
|
568 |
+
# end
|
569 |
+
if self.give_pre_end:
|
570 |
+
return h
|
571 |
+
|
572 |
+
h = self.norm_out(h)
|
573 |
+
h = nonlinearity(h)
|
574 |
+
h = self.conv_out(h)
|
575 |
+
# print(f'decoder-conv_out feat={h.shape}')
|
576 |
+
if self.tanh_out:
|
577 |
+
h = torch.tanh(h)
|
578 |
+
return h
|
579 |
+
|
580 |
+
|
581 |
+
class SimpleDecoder(nn.Module):
|
582 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
583 |
+
super().__init__()
|
584 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
585 |
+
ResnetBlock(in_channels=in_channels,
|
586 |
+
out_channels=2 * in_channels,
|
587 |
+
temb_channels=0, dropout=0.0),
|
588 |
+
ResnetBlock(in_channels=2 * in_channels,
|
589 |
+
out_channels=4 * in_channels,
|
590 |
+
temb_channels=0, dropout=0.0),
|
591 |
+
ResnetBlock(in_channels=4 * in_channels,
|
592 |
+
out_channels=2 * in_channels,
|
593 |
+
temb_channels=0, dropout=0.0),
|
594 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
595 |
+
Upsample(in_channels, with_conv=True)])
|
596 |
+
# end
|
597 |
+
self.norm_out = Normalize(in_channels)
|
598 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
599 |
+
out_channels,
|
600 |
+
kernel_size=3,
|
601 |
+
stride=1,
|
602 |
+
padding=1)
|
603 |
+
|
604 |
+
def forward(self, x):
|
605 |
+
for i, layer in enumerate(self.model):
|
606 |
+
if i in [1,2,3]:
|
607 |
+
x = layer(x, None)
|
608 |
+
else:
|
609 |
+
x = layer(x)
|
610 |
+
|
611 |
+
h = self.norm_out(x)
|
612 |
+
h = nonlinearity(h)
|
613 |
+
x = self.conv_out(h)
|
614 |
+
return x
|
615 |
+
|
616 |
+
|
617 |
+
class UpsampleDecoder(nn.Module):
|
618 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
619 |
+
ch_mult=(2,2), dropout=0.0):
|
620 |
+
super().__init__()
|
621 |
+
# upsampling
|
622 |
+
self.temb_ch = 0
|
623 |
+
self.num_resolutions = len(ch_mult)
|
624 |
+
self.num_res_blocks = num_res_blocks
|
625 |
+
block_in = in_channels
|
626 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
627 |
+
self.res_blocks = nn.ModuleList()
|
628 |
+
self.upsample_blocks = nn.ModuleList()
|
629 |
+
for i_level in range(self.num_resolutions):
|
630 |
+
res_block = []
|
631 |
+
block_out = ch * ch_mult[i_level]
|
632 |
+
for i_block in range(self.num_res_blocks + 1):
|
633 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
634 |
+
out_channels=block_out,
|
635 |
+
temb_channels=self.temb_ch,
|
636 |
+
dropout=dropout))
|
637 |
+
block_in = block_out
|
638 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
639 |
+
if i_level != self.num_resolutions - 1:
|
640 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
641 |
+
curr_res = curr_res * 2
|
642 |
+
|
643 |
+
# end
|
644 |
+
self.norm_out = Normalize(block_in)
|
645 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
646 |
+
out_channels,
|
647 |
+
kernel_size=3,
|
648 |
+
stride=1,
|
649 |
+
padding=1)
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
# upsampling
|
653 |
+
h = x
|
654 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
655 |
+
for i_block in range(self.num_res_blocks + 1):
|
656 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
657 |
+
if i_level != self.num_resolutions - 1:
|
658 |
+
h = self.upsample_blocks[k](h)
|
659 |
+
h = self.norm_out(h)
|
660 |
+
h = nonlinearity(h)
|
661 |
+
h = self.conv_out(h)
|
662 |
+
return h
|
663 |
+
|
664 |
+
|
665 |
+
class LatentRescaler(nn.Module):
|
666 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
667 |
+
super().__init__()
|
668 |
+
# residual block, interpolate, residual block
|
669 |
+
self.factor = factor
|
670 |
+
self.conv_in = nn.Conv2d(in_channels,
|
671 |
+
mid_channels,
|
672 |
+
kernel_size=3,
|
673 |
+
stride=1,
|
674 |
+
padding=1)
|
675 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
676 |
+
out_channels=mid_channels,
|
677 |
+
temb_channels=0,
|
678 |
+
dropout=0.0) for _ in range(depth)])
|
679 |
+
self.attn = AttnBlock(mid_channels)
|
680 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
681 |
+
out_channels=mid_channels,
|
682 |
+
temb_channels=0,
|
683 |
+
dropout=0.0) for _ in range(depth)])
|
684 |
+
|
685 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
686 |
+
out_channels,
|
687 |
+
kernel_size=1,
|
688 |
+
)
|
689 |
+
|
690 |
+
def forward(self, x):
|
691 |
+
x = self.conv_in(x)
|
692 |
+
for block in self.res_block1:
|
693 |
+
x = block(x, None)
|
694 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
695 |
+
x = self.attn(x)
|
696 |
+
for block in self.res_block2:
|
697 |
+
x = block(x, None)
|
698 |
+
x = self.conv_out(x)
|
699 |
+
return x
|
700 |
+
|
701 |
+
|
702 |
+
class MergedRescaleEncoder(nn.Module):
|
703 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
704 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
705 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
706 |
+
super().__init__()
|
707 |
+
intermediate_chn = ch * ch_mult[-1]
|
708 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
709 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
710 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
711 |
+
out_ch=None)
|
712 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
713 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
714 |
+
|
715 |
+
def forward(self, x):
|
716 |
+
x = self.encoder(x)
|
717 |
+
x = self.rescaler(x)
|
718 |
+
return x
|
719 |
+
|
720 |
+
|
721 |
+
class MergedRescaleDecoder(nn.Module):
|
722 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
723 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
724 |
+
super().__init__()
|
725 |
+
tmp_chn = z_channels*ch_mult[-1]
|
726 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
727 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
728 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
729 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
730 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
731 |
+
|
732 |
+
def forward(self, x):
|
733 |
+
x = self.rescaler(x)
|
734 |
+
x = self.decoder(x)
|
735 |
+
return x
|
736 |
+
|
737 |
+
|
738 |
+
class Upsampler(nn.Module):
|
739 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
740 |
+
super().__init__()
|
741 |
+
assert out_size >= in_size
|
742 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
743 |
+
factor_up = 1.+ (out_size % in_size)
|
744 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
745 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
746 |
+
out_channels=in_channels)
|
747 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
748 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
749 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
750 |
+
|
751 |
+
def forward(self, x):
|
752 |
+
x = self.rescaler(x)
|
753 |
+
x = self.decoder(x)
|
754 |
+
return x
|
755 |
+
|
756 |
+
|
757 |
+
class Resize(nn.Module):
|
758 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
759 |
+
super().__init__()
|
760 |
+
self.with_conv = learned
|
761 |
+
self.mode = mode
|
762 |
+
if self.with_conv:
|
763 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
764 |
+
raise NotImplementedError()
|
765 |
+
assert in_channels is not None
|
766 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
767 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
768 |
+
in_channels,
|
769 |
+
kernel_size=4,
|
770 |
+
stride=2,
|
771 |
+
padding=1)
|
772 |
+
|
773 |
+
def forward(self, x, scale_factor=1.0):
|
774 |
+
if scale_factor==1.0:
|
775 |
+
return x
|
776 |
+
else:
|
777 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
778 |
+
return x
|
779 |
+
|
780 |
+
class FirstStagePostProcessor(nn.Module):
|
781 |
+
|
782 |
+
def __init__(self, ch_mult:list, in_channels,
|
783 |
+
pretrained_model:nn.Module=None,
|
784 |
+
reshape=False,
|
785 |
+
n_channels=None,
|
786 |
+
dropout=0.,
|
787 |
+
pretrained_config=None):
|
788 |
+
super().__init__()
|
789 |
+
if pretrained_config is None:
|
790 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
791 |
+
self.pretrained_model = pretrained_model
|
792 |
+
else:
|
793 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
794 |
+
self.instantiate_pretrained(pretrained_config)
|
795 |
+
|
796 |
+
self.do_reshape = reshape
|
797 |
+
|
798 |
+
if n_channels is None:
|
799 |
+
n_channels = self.pretrained_model.encoder.ch
|
800 |
+
|
801 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
802 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
803 |
+
stride=1,padding=1)
|
804 |
+
|
805 |
+
blocks = []
|
806 |
+
downs = []
|
807 |
+
ch_in = n_channels
|
808 |
+
for m in ch_mult:
|
809 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
810 |
+
ch_in = m * n_channels
|
811 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
812 |
+
|
813 |
+
self.model = nn.ModuleList(blocks)
|
814 |
+
self.downsampler = nn.ModuleList(downs)
|
815 |
+
|
816 |
+
|
817 |
+
def instantiate_pretrained(self, config):
|
818 |
+
model = instantiate_from_config(config)
|
819 |
+
self.pretrained_model = model.eval()
|
820 |
+
# self.pretrained_model.train = False
|
821 |
+
for param in self.pretrained_model.parameters():
|
822 |
+
param.requires_grad = False
|
823 |
+
|
824 |
+
|
825 |
+
@torch.no_grad()
|
826 |
+
def encode_with_pretrained(self,x):
|
827 |
+
c = self.pretrained_model.encode(x)
|
828 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
829 |
+
c = c.mode()
|
830 |
+
return c
|
831 |
+
|
832 |
+
def forward(self,x):
|
833 |
+
z_fs = self.encode_with_pretrained(x)
|
834 |
+
z = self.proj_norm(z_fs)
|
835 |
+
z = self.proj(z)
|
836 |
+
z = nonlinearity(z)
|
837 |
+
|
838 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
839 |
+
z = submodel(z,temb=None)
|
840 |
+
z = downmodel(z)
|
841 |
+
|
842 |
+
if self.do_reshape:
|
843 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
844 |
+
return z
|
845 |
+
|
lvdm/modules/networks/openaimodel3d.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from abc import abstractmethod
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from lvdm.models.utils_diffusion import timestep_embedding
|
8 |
+
from lvdm.common import checkpoint
|
9 |
+
from lvdm.basics import (
|
10 |
+
zero_module,
|
11 |
+
conv_nd,
|
12 |
+
linear,
|
13 |
+
avg_pool_nd,
|
14 |
+
normalization
|
15 |
+
)
|
16 |
+
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
|
17 |
+
|
18 |
+
|
19 |
+
class TimestepBlock(nn.Module):
|
20 |
+
"""
|
21 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
22 |
+
"""
|
23 |
+
@abstractmethod
|
24 |
+
def forward(self, x, emb):
|
25 |
+
"""
|
26 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
27 |
+
"""
|
28 |
+
|
29 |
+
|
30 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
31 |
+
"""
|
32 |
+
A sequential module that passes timestep embeddings to the children that
|
33 |
+
support it as an extra input.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def forward(self, x, emb, context=None, batch_size=None, is_imgbatch=False, use_temp=True, scale_scalar=None):
|
37 |
+
for layer in self:
|
38 |
+
if isinstance(layer, TimestepBlock):
|
39 |
+
x = layer(x, emb, batch_size, is_imgbatch=is_imgbatch)
|
40 |
+
elif isinstance(layer, SpatialTransformer):
|
41 |
+
x = layer(x, context, emb, scale_scalar=scale_scalar)
|
42 |
+
elif isinstance(layer, TemporalTransformer):
|
43 |
+
if use_temp:
|
44 |
+
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
|
45 |
+
x = layer(x, context, is_imgbatch=is_imgbatch, emb=emb)
|
46 |
+
x = rearrange(x, 'b c f h w -> (b f) c h w')
|
47 |
+
else:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
x = layer(x,)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class Downsample(nn.Module):
|
55 |
+
"""
|
56 |
+
A downsampling layer with an optional convolution.
|
57 |
+
:param channels: channels in the inputs and outputs.
|
58 |
+
:param use_conv: a bool determining if a convolution is applied.
|
59 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
60 |
+
downsampling occurs in the inner-two dimensions.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
64 |
+
super().__init__()
|
65 |
+
self.channels = channels
|
66 |
+
self.out_channels = out_channels or channels
|
67 |
+
self.use_conv = use_conv
|
68 |
+
self.dims = dims
|
69 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
70 |
+
if use_conv:
|
71 |
+
self.op = conv_nd(
|
72 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
assert self.channels == self.out_channels
|
76 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
assert x.shape[1] == self.channels
|
80 |
+
return self.op(x)
|
81 |
+
|
82 |
+
|
83 |
+
class Upsample(nn.Module):
|
84 |
+
"""
|
85 |
+
An upsampling layer with an optional convolution.
|
86 |
+
:param channels: channels in the inputs and outputs.
|
87 |
+
:param use_conv: a bool determining if a convolution is applied.
|
88 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
89 |
+
upsampling occurs in the inner-two dimensions.
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
93 |
+
super().__init__()
|
94 |
+
self.channels = channels
|
95 |
+
self.out_channels = out_channels or channels
|
96 |
+
self.use_conv = use_conv
|
97 |
+
self.dims = dims
|
98 |
+
if use_conv:
|
99 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
assert x.shape[1] == self.channels
|
103 |
+
if self.dims == 3:
|
104 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
|
105 |
+
else:
|
106 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
107 |
+
if self.use_conv:
|
108 |
+
x = self.conv(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class ResBlock(TimestepBlock):
|
113 |
+
"""
|
114 |
+
A residual block that can optionally change the number of channels.
|
115 |
+
:param channels: the number of input channels.
|
116 |
+
:param emb_channels: the number of timestep embedding channels.
|
117 |
+
:param dropout: the rate of dropout.
|
118 |
+
:param out_channels: if specified, the number of out channels.
|
119 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
120 |
+
convolution instead of a smaller 1x1 convolution to change the
|
121 |
+
channels in the skip connection.
|
122 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
123 |
+
:param up: if True, use this block for upsampling.
|
124 |
+
:param down: if True, use this block for downsampling.
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
channels,
|
130 |
+
emb_channels,
|
131 |
+
dropout,
|
132 |
+
out_channels=None,
|
133 |
+
use_scale_shift_norm=False,
|
134 |
+
dims=2,
|
135 |
+
use_checkpoint=False,
|
136 |
+
use_conv=False,
|
137 |
+
up=False,
|
138 |
+
down=False,
|
139 |
+
use_temporal_conv=False,
|
140 |
+
tempspatial_aware=False
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.channels = channels
|
144 |
+
self.emb_channels = emb_channels
|
145 |
+
self.dropout = dropout
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.use_checkpoint = use_checkpoint
|
149 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
150 |
+
self.use_temporal_conv = use_temporal_conv
|
151 |
+
|
152 |
+
self.in_layers = nn.Sequential(
|
153 |
+
normalization(channels),
|
154 |
+
nn.SiLU(),
|
155 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
156 |
+
)
|
157 |
+
|
158 |
+
self.updown = up or down
|
159 |
+
|
160 |
+
if up:
|
161 |
+
self.h_upd = Upsample(channels, False, dims)
|
162 |
+
self.x_upd = Upsample(channels, False, dims)
|
163 |
+
elif down:
|
164 |
+
self.h_upd = Downsample(channels, False, dims)
|
165 |
+
self.x_upd = Downsample(channels, False, dims)
|
166 |
+
else:
|
167 |
+
self.h_upd = self.x_upd = nn.Identity()
|
168 |
+
|
169 |
+
self.emb_layers = nn.Sequential(
|
170 |
+
nn.SiLU(),
|
171 |
+
nn.Linear(
|
172 |
+
emb_channels,
|
173 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
174 |
+
),
|
175 |
+
)
|
176 |
+
self.out_layers = nn.Sequential(
|
177 |
+
normalization(self.out_channels),
|
178 |
+
nn.SiLU(),
|
179 |
+
nn.Dropout(p=dropout),
|
180 |
+
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
|
181 |
+
)
|
182 |
+
|
183 |
+
if self.out_channels == channels:
|
184 |
+
self.skip_connection = nn.Identity()
|
185 |
+
elif use_conv:
|
186 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
187 |
+
else:
|
188 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
189 |
+
|
190 |
+
if self.use_temporal_conv:
|
191 |
+
self.temopral_conv = TemporalConvBlock(
|
192 |
+
self.out_channels,
|
193 |
+
self.out_channels,
|
194 |
+
dropout=0.1,
|
195 |
+
spatial_aware=tempspatial_aware
|
196 |
+
)
|
197 |
+
|
198 |
+
def forward(self, x, emb, batch_size=None, is_imgbatch=False):
|
199 |
+
"""
|
200 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
201 |
+
:param x: an [N x C x ...] Tensor of features.
|
202 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
203 |
+
:return: an [N x C x ...] Tensor of outputs.
|
204 |
+
"""
|
205 |
+
input_tuple = (x, emb,)
|
206 |
+
if batch_size:
|
207 |
+
forward_batchsize = partial(self._forward, batch_size=batch_size, is_imgbatch=is_imgbatch)
|
208 |
+
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
|
209 |
+
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
|
210 |
+
|
211 |
+
def _forward(self, x, emb, batch_size=None, is_imgbatch=False):
|
212 |
+
if self.updown:
|
213 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
214 |
+
h = in_rest(x)
|
215 |
+
h = self.h_upd(h)
|
216 |
+
x = self.x_upd(x)
|
217 |
+
h = in_conv(h)
|
218 |
+
else:
|
219 |
+
h = self.in_layers(x)
|
220 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
221 |
+
while len(emb_out.shape) < len(h.shape):
|
222 |
+
emb_out = emb_out[..., None]
|
223 |
+
if self.use_scale_shift_norm:
|
224 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
225 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
226 |
+
h = out_norm(h) * (1 + scale) + shift
|
227 |
+
h = out_rest(h)
|
228 |
+
else:
|
229 |
+
h = h + emb_out
|
230 |
+
h = self.out_layers(h)
|
231 |
+
h = self.skip_connection(x) + h
|
232 |
+
|
233 |
+
if self.use_temporal_conv and batch_size and not is_imgbatch:
|
234 |
+
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
|
235 |
+
h = self.temopral_conv(h)
|
236 |
+
h = rearrange(h, 'b c t h w -> (b t) c h w')
|
237 |
+
return h
|
238 |
+
|
239 |
+
|
240 |
+
class TemporalConvBlock(nn.Module):
|
241 |
+
"""
|
242 |
+
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
|
246 |
+
super(TemporalConvBlock, self).__init__()
|
247 |
+
if out_channels is None:
|
248 |
+
out_channels = in_channels
|
249 |
+
self.in_channels = in_channels
|
250 |
+
self.out_channels = out_channels
|
251 |
+
kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3)
|
252 |
+
padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1)
|
253 |
+
|
254 |
+
# conv layers
|
255 |
+
self.conv1 = nn.Sequential(
|
256 |
+
nn.GroupNorm(32, in_channels), nn.SiLU(),
|
257 |
+
nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape))
|
258 |
+
self.conv2 = nn.Sequential(
|
259 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
260 |
+
nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape))
|
261 |
+
self.conv3 = nn.Sequential(
|
262 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
263 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
|
264 |
+
self.conv4 = nn.Sequential(
|
265 |
+
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
266 |
+
nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
|
267 |
+
|
268 |
+
# zero out the last layer params,so the conv block is identity
|
269 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
270 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
identity = x
|
274 |
+
x = self.conv1(x)
|
275 |
+
x = self.conv2(x)
|
276 |
+
x = self.conv3(x)
|
277 |
+
x = self.conv4(x)
|
278 |
+
|
279 |
+
return x + identity
|
280 |
+
|
281 |
+
|
282 |
+
class UNetModel(nn.Module):
|
283 |
+
"""
|
284 |
+
The full UNet model with attention and timestep embedding.
|
285 |
+
:param in_channels: in_channels in the input Tensor.
|
286 |
+
:param model_channels: base channel count for the model.
|
287 |
+
:param out_channels: channels in the output Tensor.
|
288 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
289 |
+
:param attention_resolutions: a collection of downsample rates at which
|
290 |
+
attention will take place. May be a set, list, or tuple.
|
291 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
292 |
+
will be used.
|
293 |
+
:param dropout: the dropout probability.
|
294 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
295 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
296 |
+
downsampling.
|
297 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
298 |
+
:param num_classes: if specified (as an int), then this model will be
|
299 |
+
class-conditional with `num_classes` classes.
|
300 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
301 |
+
:param num_heads: the number of attention heads in each attention layer.
|
302 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
303 |
+
a fixed channel width per attention head.
|
304 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
305 |
+
of heads for upsampling. Deprecated.
|
306 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
307 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
308 |
+
"""
|
309 |
+
|
310 |
+
def __init__(self,
|
311 |
+
in_channels,
|
312 |
+
model_channels,
|
313 |
+
out_channels,
|
314 |
+
num_res_blocks,
|
315 |
+
attention_resolutions,
|
316 |
+
dropout=0.0,
|
317 |
+
channel_mult=(1, 2, 4, 8),
|
318 |
+
conv_resample=True,
|
319 |
+
dims=2,
|
320 |
+
context_dim=None,
|
321 |
+
use_scale_shift_norm=False,
|
322 |
+
resblock_updown=False,
|
323 |
+
num_heads=-1,
|
324 |
+
num_head_channels=-1,
|
325 |
+
transformer_depth=1,
|
326 |
+
use_linear=False,
|
327 |
+
use_checkpoint=False,
|
328 |
+
temporal_conv=False,
|
329 |
+
tempspatial_aware=False,
|
330 |
+
temporal_attention=True,
|
331 |
+
temporal_selfatt_only=True,
|
332 |
+
use_relative_position=True,
|
333 |
+
use_causal_attention=False,
|
334 |
+
temporal_length=None,
|
335 |
+
use_fp16=False,
|
336 |
+
addition_attention=False,
|
337 |
+
use_image_attention=False,
|
338 |
+
temporal_transformer_depth=1,
|
339 |
+
fps_cond=False,
|
340 |
+
):
|
341 |
+
super(UNetModel, self).__init__()
|
342 |
+
if num_heads == -1:
|
343 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
344 |
+
if num_head_channels == -1:
|
345 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
346 |
+
|
347 |
+
self.in_channels = in_channels
|
348 |
+
self.model_channels = model_channels
|
349 |
+
self.out_channels = out_channels
|
350 |
+
self.num_res_blocks = num_res_blocks
|
351 |
+
self.attention_resolutions = attention_resolutions
|
352 |
+
self.dropout = dropout
|
353 |
+
self.channel_mult = channel_mult
|
354 |
+
self.conv_resample = conv_resample
|
355 |
+
self.temporal_attention = temporal_attention
|
356 |
+
time_embed_dim = model_channels * 4
|
357 |
+
self.use_checkpoint = use_checkpoint
|
358 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
359 |
+
self.addition_attention=addition_attention
|
360 |
+
self.use_image_attention = use_image_attention
|
361 |
+
self.fps_cond=fps_cond
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
self.time_embed = nn.Sequential(
|
366 |
+
linear(model_channels, time_embed_dim),
|
367 |
+
nn.SiLU(),
|
368 |
+
linear(time_embed_dim, time_embed_dim),
|
369 |
+
)
|
370 |
+
if self.fps_cond:
|
371 |
+
self.fps_embedding = nn.Sequential(
|
372 |
+
linear(model_channels, time_embed_dim),
|
373 |
+
nn.SiLU(),
|
374 |
+
linear(time_embed_dim, time_embed_dim),
|
375 |
+
)
|
376 |
+
|
377 |
+
self.input_blocks = nn.ModuleList(
|
378 |
+
[
|
379 |
+
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
380 |
+
]
|
381 |
+
)
|
382 |
+
if self.addition_attention:
|
383 |
+
self.init_attn=TimestepEmbedSequential(
|
384 |
+
TemporalTransformer(
|
385 |
+
model_channels,
|
386 |
+
n_heads=8,
|
387 |
+
d_head=num_head_channels,
|
388 |
+
depth=transformer_depth,
|
389 |
+
context_dim=context_dim,
|
390 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
391 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
392 |
+
temporal_length=temporal_length))
|
393 |
+
|
394 |
+
input_block_chans = [model_channels]
|
395 |
+
ch = model_channels
|
396 |
+
ds = 1
|
397 |
+
for level, mult in enumerate(channel_mult):
|
398 |
+
for _ in range(num_res_blocks):
|
399 |
+
layers = [
|
400 |
+
ResBlock(ch, time_embed_dim, dropout,
|
401 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
402 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
403 |
+
use_temporal_conv=temporal_conv
|
404 |
+
)
|
405 |
+
]
|
406 |
+
ch = mult * model_channels
|
407 |
+
if ds in attention_resolutions:
|
408 |
+
if num_head_channels == -1:
|
409 |
+
dim_head = ch // num_heads
|
410 |
+
else:
|
411 |
+
num_heads = ch // num_head_channels
|
412 |
+
dim_head = num_head_channels
|
413 |
+
layers.append(
|
414 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
415 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
416 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
417 |
+
img_cross_attention=self.use_image_attention
|
418 |
+
)
|
419 |
+
)
|
420 |
+
if self.temporal_attention:
|
421 |
+
layers.append(
|
422 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
423 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
424 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
425 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
426 |
+
temporal_length=temporal_length
|
427 |
+
)
|
428 |
+
)
|
429 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
430 |
+
input_block_chans.append(ch)
|
431 |
+
if level != len(channel_mult) - 1:
|
432 |
+
out_ch = ch
|
433 |
+
self.input_blocks.append(
|
434 |
+
TimestepEmbedSequential(
|
435 |
+
ResBlock(ch, time_embed_dim, dropout,
|
436 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
437 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
438 |
+
down=True
|
439 |
+
)
|
440 |
+
if resblock_updown
|
441 |
+
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
442 |
+
)
|
443 |
+
)
|
444 |
+
ch = out_ch
|
445 |
+
input_block_chans.append(ch)
|
446 |
+
ds *= 2
|
447 |
+
|
448 |
+
if num_head_channels == -1:
|
449 |
+
dim_head = ch // num_heads
|
450 |
+
else:
|
451 |
+
num_heads = ch // num_head_channels
|
452 |
+
dim_head = num_head_channels
|
453 |
+
layers = [
|
454 |
+
ResBlock(ch, time_embed_dim, dropout,
|
455 |
+
dims=dims, use_checkpoint=use_checkpoint,
|
456 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
457 |
+
use_temporal_conv=temporal_conv
|
458 |
+
),
|
459 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
460 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
461 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
462 |
+
img_cross_attention=self.use_image_attention
|
463 |
+
)
|
464 |
+
]
|
465 |
+
if self.temporal_attention:
|
466 |
+
layers.append(
|
467 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
468 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
469 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
470 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
471 |
+
temporal_length=temporal_length
|
472 |
+
)
|
473 |
+
)
|
474 |
+
layers.append(
|
475 |
+
ResBlock(ch, time_embed_dim, dropout,
|
476 |
+
dims=dims, use_checkpoint=use_checkpoint,
|
477 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
478 |
+
use_temporal_conv=temporal_conv
|
479 |
+
)
|
480 |
+
)
|
481 |
+
self.middle_block = TimestepEmbedSequential(*layers)
|
482 |
+
|
483 |
+
self.output_blocks = nn.ModuleList([])
|
484 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
485 |
+
for i in range(num_res_blocks + 1):
|
486 |
+
ich = input_block_chans.pop()
|
487 |
+
layers = [
|
488 |
+
ResBlock(ch + ich, time_embed_dim, dropout,
|
489 |
+
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
490 |
+
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
491 |
+
use_temporal_conv=temporal_conv
|
492 |
+
)
|
493 |
+
]
|
494 |
+
ch = model_channels * mult
|
495 |
+
if ds in attention_resolutions:
|
496 |
+
if num_head_channels == -1:
|
497 |
+
dim_head = ch // num_heads
|
498 |
+
else:
|
499 |
+
num_heads = ch // num_head_channels
|
500 |
+
dim_head = num_head_channels
|
501 |
+
layers.append(
|
502 |
+
SpatialTransformer(ch, num_heads, dim_head,
|
503 |
+
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
504 |
+
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
505 |
+
img_cross_attention=self.use_image_attention
|
506 |
+
)
|
507 |
+
)
|
508 |
+
if self.temporal_attention:
|
509 |
+
layers.append(
|
510 |
+
TemporalTransformer(ch, num_heads, dim_head,
|
511 |
+
depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
512 |
+
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
513 |
+
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
514 |
+
temporal_length=temporal_length
|
515 |
+
)
|
516 |
+
)
|
517 |
+
if level and i == num_res_blocks:
|
518 |
+
out_ch = ch
|
519 |
+
layers.append(
|
520 |
+
ResBlock(ch, time_embed_dim, dropout,
|
521 |
+
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
522 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
523 |
+
up=True
|
524 |
+
)
|
525 |
+
if resblock_updown
|
526 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
527 |
+
)
|
528 |
+
ds //= 2
|
529 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
530 |
+
|
531 |
+
self.out = nn.Sequential(
|
532 |
+
normalization(ch),
|
533 |
+
nn.SiLU(),
|
534 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
535 |
+
)
|
536 |
+
|
537 |
+
def forward(self, x, timesteps, context=None, append_to_context=None, features_adapter=None, scale_scalar=None, is_imgbatch=False, fps=16, **kwargs):
|
538 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
539 |
+
emb = self.time_embed(t_emb)
|
540 |
+
|
541 |
+
# add style context
|
542 |
+
if append_to_context is not None:
|
543 |
+
context = torch.cat((context, append_to_context), dim=1)
|
544 |
+
|
545 |
+
|
546 |
+
if self.fps_cond:
|
547 |
+
if type(fps) == int:
|
548 |
+
fps = torch.full_like(timesteps, fps)
|
549 |
+
fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False)
|
550 |
+
emb += self.fps_embedding(fps_emb)
|
551 |
+
|
552 |
+
b,_,t,_,_ = x.shape
|
553 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
554 |
+
if not is_imgbatch:
|
555 |
+
context = context.repeat_interleave(repeats=t, dim=0)
|
556 |
+
if scale_scalar is not None:
|
557 |
+
scale_scalar = scale_scalar.repeat_interleave(repeats=t, dim=0)
|
558 |
+
|
559 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
560 |
+
|
561 |
+
## always in shape (b t) c h w, except for temporal layer
|
562 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
563 |
+
|
564 |
+
h = x.type(self.dtype)
|
565 |
+
adapter_idx = 0
|
566 |
+
hs = []
|
567 |
+
for id, module in enumerate(self.input_blocks):
|
568 |
+
h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar)
|
569 |
+
if id ==0 and self.addition_attention:
|
570 |
+
h = self.init_attn(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar)
|
571 |
+
## plug-in adapter features
|
572 |
+
if ((id+1)%3 == 0) and features_adapter is not None:
|
573 |
+
h = h + features_adapter[adapter_idx]
|
574 |
+
adapter_idx += 1
|
575 |
+
hs.append(h)
|
576 |
+
if features_adapter is not None:
|
577 |
+
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
|
578 |
+
|
579 |
+
h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar)
|
580 |
+
for module in self.output_blocks:
|
581 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
582 |
+
h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar)
|
583 |
+
h = h.type(x.dtype)
|
584 |
+
y = self.out(h)
|
585 |
+
|
586 |
+
# reshape back to (b c t h w)
|
587 |
+
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
|
588 |
+
return y
|
589 |
+
|
590 |
+
|
591 |
+
|
592 |
+
class UNet2DModel(UNetModel):
|
593 |
+
def forward(self, x, timesteps, context=None, append_to_context=None, features_adapter=None, scale_scalar=None, fps=16, use_temp=False, **kwargs):
|
594 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
595 |
+
emb = self.time_embed(t_emb)
|
596 |
+
|
597 |
+
if self.fps_cond:
|
598 |
+
if type(fps) == int:
|
599 |
+
fps = torch.full_like(timesteps, fps)
|
600 |
+
fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False)
|
601 |
+
emb += self.fps_embedding(fps_emb)
|
602 |
+
|
603 |
+
b,_,t,_,_ = x.shape
|
604 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
605 |
+
if context.shape[0] != b*t:
|
606 |
+
context = context.repeat_interleave(repeats=t, dim=0)
|
607 |
+
if emb.shape[0] != b*t:
|
608 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
609 |
+
|
610 |
+
# add style context
|
611 |
+
if append_to_context is not None:
|
612 |
+
context = torch.cat((context, append_to_context), dim=1)
|
613 |
+
|
614 |
+
## always in shape (b t) c h w, except for temporal layer
|
615 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
616 |
+
|
617 |
+
h = x.type(self.dtype)
|
618 |
+
adapter_idx = 0
|
619 |
+
hs = []
|
620 |
+
for id, module in enumerate(self.input_blocks):
|
621 |
+
h = module(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar)
|
622 |
+
if id ==0 and self.addition_attention:
|
623 |
+
h = self.init_attn(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar)
|
624 |
+
## plug-in adapter features
|
625 |
+
if ((id+1)%3 == 0) and features_adapter is not None:
|
626 |
+
h = h + features_adapter[adapter_idx]
|
627 |
+
adapter_idx += 1
|
628 |
+
hs.append(h)
|
629 |
+
if features_adapter is not None:
|
630 |
+
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
|
631 |
+
|
632 |
+
h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar)
|
633 |
+
for module in self.output_blocks:
|
634 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
635 |
+
h = module(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar)
|
636 |
+
h = h.type(x.dtype)
|
637 |
+
y = self.out(h)
|
638 |
+
|
639 |
+
# reshape back to (b c t h w)
|
640 |
+
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
|
641 |
+
return y
|
lvdm/modules/x_transformer.py
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
from functools import partial
|
3 |
+
from inspect import isfunction
|
4 |
+
from collections import namedtuple
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
import torch
|
7 |
+
from torch import nn, einsum
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
# constants
|
11 |
+
DEFAULT_DIM_HEAD = 64
|
12 |
+
|
13 |
+
Intermediates = namedtuple('Intermediates', [
|
14 |
+
'pre_softmax_attn',
|
15 |
+
'post_softmax_attn'
|
16 |
+
])
|
17 |
+
|
18 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
19 |
+
'hiddens',
|
20 |
+
'attn_intermediates'
|
21 |
+
])
|
22 |
+
|
23 |
+
|
24 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
25 |
+
def __init__(self, dim, max_seq_len):
|
26 |
+
super().__init__()
|
27 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
28 |
+
self.init_()
|
29 |
+
|
30 |
+
def init_(self):
|
31 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
n = torch.arange(x.shape[1], device=x.device)
|
35 |
+
return self.emb(n)[None, :, :]
|
36 |
+
|
37 |
+
|
38 |
+
class FixedPositionalEmbedding(nn.Module):
|
39 |
+
def __init__(self, dim):
|
40 |
+
super().__init__()
|
41 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
42 |
+
self.register_buffer('inv_freq', inv_freq)
|
43 |
+
|
44 |
+
def forward(self, x, seq_dim=1, offset=0):
|
45 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
46 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
47 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
48 |
+
return emb[None, :, :]
|
49 |
+
|
50 |
+
|
51 |
+
# helpers
|
52 |
+
|
53 |
+
def exists(val):
|
54 |
+
return val is not None
|
55 |
+
|
56 |
+
|
57 |
+
def default(val, d):
|
58 |
+
if exists(val):
|
59 |
+
return val
|
60 |
+
return d() if isfunction(d) else d
|
61 |
+
|
62 |
+
|
63 |
+
def always(val):
|
64 |
+
def inner(*args, **kwargs):
|
65 |
+
return val
|
66 |
+
return inner
|
67 |
+
|
68 |
+
|
69 |
+
def not_equals(val):
|
70 |
+
def inner(x):
|
71 |
+
return x != val
|
72 |
+
return inner
|
73 |
+
|
74 |
+
|
75 |
+
def equals(val):
|
76 |
+
def inner(x):
|
77 |
+
return x == val
|
78 |
+
return inner
|
79 |
+
|
80 |
+
|
81 |
+
def max_neg_value(tensor):
|
82 |
+
return -torch.finfo(tensor.dtype).max
|
83 |
+
|
84 |
+
|
85 |
+
# keyword argument helpers
|
86 |
+
|
87 |
+
def pick_and_pop(keys, d):
|
88 |
+
values = list(map(lambda key: d.pop(key), keys))
|
89 |
+
return dict(zip(keys, values))
|
90 |
+
|
91 |
+
|
92 |
+
def group_dict_by_key(cond, d):
|
93 |
+
return_val = [dict(), dict()]
|
94 |
+
for key in d.keys():
|
95 |
+
match = bool(cond(key))
|
96 |
+
ind = int(not match)
|
97 |
+
return_val[ind][key] = d[key]
|
98 |
+
return (*return_val,)
|
99 |
+
|
100 |
+
|
101 |
+
def string_begins_with(prefix, str):
|
102 |
+
return str.startswith(prefix)
|
103 |
+
|
104 |
+
|
105 |
+
def group_by_key_prefix(prefix, d):
|
106 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
107 |
+
|
108 |
+
|
109 |
+
def groupby_prefix_and_trim(prefix, d):
|
110 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
111 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
112 |
+
return kwargs_without_prefix, kwargs
|
113 |
+
|
114 |
+
|
115 |
+
# classes
|
116 |
+
class Scale(nn.Module):
|
117 |
+
def __init__(self, value, fn):
|
118 |
+
super().__init__()
|
119 |
+
self.value = value
|
120 |
+
self.fn = fn
|
121 |
+
|
122 |
+
def forward(self, x, **kwargs):
|
123 |
+
x, *rest = self.fn(x, **kwargs)
|
124 |
+
return (x * self.value, *rest)
|
125 |
+
|
126 |
+
|
127 |
+
class Rezero(nn.Module):
|
128 |
+
def __init__(self, fn):
|
129 |
+
super().__init__()
|
130 |
+
self.fn = fn
|
131 |
+
self.g = nn.Parameter(torch.zeros(1))
|
132 |
+
|
133 |
+
def forward(self, x, **kwargs):
|
134 |
+
x, *rest = self.fn(x, **kwargs)
|
135 |
+
return (x * self.g, *rest)
|
136 |
+
|
137 |
+
|
138 |
+
class ScaleNorm(nn.Module):
|
139 |
+
def __init__(self, dim, eps=1e-5):
|
140 |
+
super().__init__()
|
141 |
+
self.scale = dim ** -0.5
|
142 |
+
self.eps = eps
|
143 |
+
self.g = nn.Parameter(torch.ones(1))
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
147 |
+
return x / norm.clamp(min=self.eps) * self.g
|
148 |
+
|
149 |
+
|
150 |
+
class RMSNorm(nn.Module):
|
151 |
+
def __init__(self, dim, eps=1e-8):
|
152 |
+
super().__init__()
|
153 |
+
self.scale = dim ** -0.5
|
154 |
+
self.eps = eps
|
155 |
+
self.g = nn.Parameter(torch.ones(dim))
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
159 |
+
return x / norm.clamp(min=self.eps) * self.g
|
160 |
+
|
161 |
+
|
162 |
+
class Residual(nn.Module):
|
163 |
+
def forward(self, x, residual):
|
164 |
+
return x + residual
|
165 |
+
|
166 |
+
|
167 |
+
class GRUGating(nn.Module):
|
168 |
+
def __init__(self, dim):
|
169 |
+
super().__init__()
|
170 |
+
self.gru = nn.GRUCell(dim, dim)
|
171 |
+
|
172 |
+
def forward(self, x, residual):
|
173 |
+
gated_output = self.gru(
|
174 |
+
rearrange(x, 'b n d -> (b n) d'),
|
175 |
+
rearrange(residual, 'b n d -> (b n) d')
|
176 |
+
)
|
177 |
+
|
178 |
+
return gated_output.reshape_as(x)
|
179 |
+
|
180 |
+
|
181 |
+
# feedforward
|
182 |
+
|
183 |
+
class GEGLU(nn.Module):
|
184 |
+
def __init__(self, dim_in, dim_out):
|
185 |
+
super().__init__()
|
186 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
187 |
+
|
188 |
+
def forward(self, x):
|
189 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
190 |
+
return x * F.gelu(gate)
|
191 |
+
|
192 |
+
|
193 |
+
class FeedForward(nn.Module):
|
194 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
195 |
+
super().__init__()
|
196 |
+
inner_dim = int(dim * mult)
|
197 |
+
dim_out = default(dim_out, dim)
|
198 |
+
project_in = nn.Sequential(
|
199 |
+
nn.Linear(dim, inner_dim),
|
200 |
+
nn.GELU()
|
201 |
+
) if not glu else GEGLU(dim, inner_dim)
|
202 |
+
|
203 |
+
self.net = nn.Sequential(
|
204 |
+
project_in,
|
205 |
+
nn.Dropout(dropout),
|
206 |
+
nn.Linear(inner_dim, dim_out)
|
207 |
+
)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
return self.net(x)
|
211 |
+
|
212 |
+
|
213 |
+
# attention.
|
214 |
+
class Attention(nn.Module):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
dim,
|
218 |
+
dim_head=DEFAULT_DIM_HEAD,
|
219 |
+
heads=8,
|
220 |
+
causal=False,
|
221 |
+
mask=None,
|
222 |
+
talking_heads=False,
|
223 |
+
sparse_topk=None,
|
224 |
+
use_entmax15=False,
|
225 |
+
num_mem_kv=0,
|
226 |
+
dropout=0.,
|
227 |
+
on_attn=False
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
if use_entmax15:
|
231 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
232 |
+
self.scale = dim_head ** -0.5
|
233 |
+
self.heads = heads
|
234 |
+
self.causal = causal
|
235 |
+
self.mask = mask
|
236 |
+
|
237 |
+
inner_dim = dim_head * heads
|
238 |
+
|
239 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
240 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
241 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
242 |
+
self.dropout = nn.Dropout(dropout)
|
243 |
+
|
244 |
+
# talking heads
|
245 |
+
self.talking_heads = talking_heads
|
246 |
+
if talking_heads:
|
247 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
248 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
249 |
+
|
250 |
+
# explicit topk sparse attention
|
251 |
+
self.sparse_topk = sparse_topk
|
252 |
+
|
253 |
+
# entmax
|
254 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
255 |
+
self.attn_fn = F.softmax
|
256 |
+
|
257 |
+
# add memory key / values
|
258 |
+
self.num_mem_kv = num_mem_kv
|
259 |
+
if num_mem_kv > 0:
|
260 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
261 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
262 |
+
|
263 |
+
# attention on attention
|
264 |
+
self.attn_on_attn = on_attn
|
265 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
x,
|
270 |
+
context=None,
|
271 |
+
mask=None,
|
272 |
+
context_mask=None,
|
273 |
+
rel_pos=None,
|
274 |
+
sinusoidal_emb=None,
|
275 |
+
prev_attn=None,
|
276 |
+
mem=None
|
277 |
+
):
|
278 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
279 |
+
kv_input = default(context, x)
|
280 |
+
|
281 |
+
q_input = x
|
282 |
+
k_input = kv_input
|
283 |
+
v_input = kv_input
|
284 |
+
|
285 |
+
if exists(mem):
|
286 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
287 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
288 |
+
|
289 |
+
if exists(sinusoidal_emb):
|
290 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
291 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
292 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
293 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
294 |
+
|
295 |
+
q = self.to_q(q_input)
|
296 |
+
k = self.to_k(k_input)
|
297 |
+
v = self.to_v(v_input)
|
298 |
+
|
299 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
300 |
+
|
301 |
+
input_mask = None
|
302 |
+
if any(map(exists, (mask, context_mask))):
|
303 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
304 |
+
k_mask = q_mask if not exists(context) else context_mask
|
305 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
306 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
307 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
308 |
+
input_mask = q_mask * k_mask
|
309 |
+
|
310 |
+
if self.num_mem_kv > 0:
|
311 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
312 |
+
k = torch.cat((mem_k, k), dim=-2)
|
313 |
+
v = torch.cat((mem_v, v), dim=-2)
|
314 |
+
if exists(input_mask):
|
315 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
316 |
+
|
317 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
318 |
+
mask_value = max_neg_value(dots)
|
319 |
+
|
320 |
+
if exists(prev_attn):
|
321 |
+
dots = dots + prev_attn
|
322 |
+
|
323 |
+
pre_softmax_attn = dots
|
324 |
+
|
325 |
+
if talking_heads:
|
326 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
327 |
+
|
328 |
+
if exists(rel_pos):
|
329 |
+
dots = rel_pos(dots)
|
330 |
+
|
331 |
+
if exists(input_mask):
|
332 |
+
dots.masked_fill_(~input_mask, mask_value)
|
333 |
+
del input_mask
|
334 |
+
|
335 |
+
if self.causal:
|
336 |
+
i, j = dots.shape[-2:]
|
337 |
+
r = torch.arange(i, device=device)
|
338 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
339 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
340 |
+
dots.masked_fill_(mask, mask_value)
|
341 |
+
del mask
|
342 |
+
|
343 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
344 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
345 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
346 |
+
mask = dots < vk
|
347 |
+
dots.masked_fill_(mask, mask_value)
|
348 |
+
del mask
|
349 |
+
|
350 |
+
attn = self.attn_fn(dots, dim=-1)
|
351 |
+
post_softmax_attn = attn
|
352 |
+
|
353 |
+
attn = self.dropout(attn)
|
354 |
+
|
355 |
+
if talking_heads:
|
356 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
357 |
+
|
358 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
359 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
360 |
+
|
361 |
+
intermediates = Intermediates(
|
362 |
+
pre_softmax_attn=pre_softmax_attn,
|
363 |
+
post_softmax_attn=post_softmax_attn
|
364 |
+
)
|
365 |
+
|
366 |
+
return self.to_out(out), intermediates
|
367 |
+
|
368 |
+
|
369 |
+
class AttentionLayers(nn.Module):
|
370 |
+
def __init__(
|
371 |
+
self,
|
372 |
+
dim,
|
373 |
+
depth,
|
374 |
+
heads=8,
|
375 |
+
causal=False,
|
376 |
+
cross_attend=False,
|
377 |
+
only_cross=False,
|
378 |
+
use_scalenorm=False,
|
379 |
+
use_rmsnorm=False,
|
380 |
+
use_rezero=False,
|
381 |
+
rel_pos_num_buckets=32,
|
382 |
+
rel_pos_max_distance=128,
|
383 |
+
position_infused_attn=False,
|
384 |
+
custom_layers=None,
|
385 |
+
sandwich_coef=None,
|
386 |
+
par_ratio=None,
|
387 |
+
residual_attn=False,
|
388 |
+
cross_residual_attn=False,
|
389 |
+
macaron=False,
|
390 |
+
pre_norm=True,
|
391 |
+
gate_residual=False,
|
392 |
+
**kwargs
|
393 |
+
):
|
394 |
+
super().__init__()
|
395 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
396 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
397 |
+
|
398 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
399 |
+
|
400 |
+
self.dim = dim
|
401 |
+
self.depth = depth
|
402 |
+
self.layers = nn.ModuleList([])
|
403 |
+
|
404 |
+
self.has_pos_emb = position_infused_attn
|
405 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
406 |
+
self.rotary_pos_emb = always(None)
|
407 |
+
|
408 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
409 |
+
self.rel_pos = None
|
410 |
+
|
411 |
+
self.pre_norm = pre_norm
|
412 |
+
|
413 |
+
self.residual_attn = residual_attn
|
414 |
+
self.cross_residual_attn = cross_residual_attn
|
415 |
+
|
416 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
417 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
418 |
+
norm_fn = partial(norm_class, dim)
|
419 |
+
|
420 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
421 |
+
branch_fn = Rezero if use_rezero else None
|
422 |
+
|
423 |
+
if cross_attend and not only_cross:
|
424 |
+
default_block = ('a', 'c', 'f')
|
425 |
+
elif cross_attend and only_cross:
|
426 |
+
default_block = ('c', 'f')
|
427 |
+
else:
|
428 |
+
default_block = ('a', 'f')
|
429 |
+
|
430 |
+
if macaron:
|
431 |
+
default_block = ('f',) + default_block
|
432 |
+
|
433 |
+
if exists(custom_layers):
|
434 |
+
layer_types = custom_layers
|
435 |
+
elif exists(par_ratio):
|
436 |
+
par_depth = depth * len(default_block)
|
437 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
438 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
439 |
+
par_attn = par_depth // par_ratio
|
440 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
441 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
442 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
443 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
444 |
+
par_head = par_block * par_attn
|
445 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
446 |
+
elif exists(sandwich_coef):
|
447 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
448 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
449 |
+
else:
|
450 |
+
layer_types = default_block * depth
|
451 |
+
|
452 |
+
self.layer_types = layer_types
|
453 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
454 |
+
|
455 |
+
for layer_type in self.layer_types:
|
456 |
+
if layer_type == 'a':
|
457 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
458 |
+
elif layer_type == 'c':
|
459 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
460 |
+
elif layer_type == 'f':
|
461 |
+
layer = FeedForward(dim, **ff_kwargs)
|
462 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
463 |
+
else:
|
464 |
+
raise Exception(f'invalid layer type {layer_type}')
|
465 |
+
|
466 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
467 |
+
layer = branch_fn(layer)
|
468 |
+
|
469 |
+
if gate_residual:
|
470 |
+
residual_fn = GRUGating(dim)
|
471 |
+
else:
|
472 |
+
residual_fn = Residual()
|
473 |
+
|
474 |
+
self.layers.append(nn.ModuleList([
|
475 |
+
norm_fn(),
|
476 |
+
layer,
|
477 |
+
residual_fn
|
478 |
+
]))
|
479 |
+
|
480 |
+
def forward(
|
481 |
+
self,
|
482 |
+
x,
|
483 |
+
context=None,
|
484 |
+
mask=None,
|
485 |
+
context_mask=None,
|
486 |
+
mems=None,
|
487 |
+
return_hiddens=False
|
488 |
+
):
|
489 |
+
hiddens = []
|
490 |
+
intermediates = []
|
491 |
+
prev_attn = None
|
492 |
+
prev_cross_attn = None
|
493 |
+
|
494 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
495 |
+
|
496 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
497 |
+
is_last = ind == (len(self.layers) - 1)
|
498 |
+
|
499 |
+
if layer_type == 'a':
|
500 |
+
hiddens.append(x)
|
501 |
+
layer_mem = mems.pop(0)
|
502 |
+
|
503 |
+
residual = x
|
504 |
+
|
505 |
+
if self.pre_norm:
|
506 |
+
x = norm(x)
|
507 |
+
|
508 |
+
if layer_type == 'a':
|
509 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
510 |
+
prev_attn=prev_attn, mem=layer_mem)
|
511 |
+
elif layer_type == 'c':
|
512 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
513 |
+
elif layer_type == 'f':
|
514 |
+
out = block(x)
|
515 |
+
|
516 |
+
x = residual_fn(out, residual)
|
517 |
+
|
518 |
+
if layer_type in ('a', 'c'):
|
519 |
+
intermediates.append(inter)
|
520 |
+
|
521 |
+
if layer_type == 'a' and self.residual_attn:
|
522 |
+
prev_attn = inter.pre_softmax_attn
|
523 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
524 |
+
prev_cross_attn = inter.pre_softmax_attn
|
525 |
+
|
526 |
+
if not self.pre_norm and not is_last:
|
527 |
+
x = norm(x)
|
528 |
+
|
529 |
+
if return_hiddens:
|
530 |
+
intermediates = LayerIntermediates(
|
531 |
+
hiddens=hiddens,
|
532 |
+
attn_intermediates=intermediates
|
533 |
+
)
|
534 |
+
|
535 |
+
return x, intermediates
|
536 |
+
|
537 |
+
return x
|
538 |
+
|
539 |
+
|
540 |
+
class Encoder(AttentionLayers):
|
541 |
+
def __init__(self, **kwargs):
|
542 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
543 |
+
super().__init__(causal=False, **kwargs)
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
+
class TransformerWrapper(nn.Module):
|
548 |
+
def __init__(
|
549 |
+
self,
|
550 |
+
*,
|
551 |
+
num_tokens,
|
552 |
+
max_seq_len,
|
553 |
+
attn_layers,
|
554 |
+
emb_dim=None,
|
555 |
+
max_mem_len=0.,
|
556 |
+
emb_dropout=0.,
|
557 |
+
num_memory_tokens=None,
|
558 |
+
tie_embedding=False,
|
559 |
+
use_pos_emb=True
|
560 |
+
):
|
561 |
+
super().__init__()
|
562 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
563 |
+
|
564 |
+
dim = attn_layers.dim
|
565 |
+
emb_dim = default(emb_dim, dim)
|
566 |
+
|
567 |
+
self.max_seq_len = max_seq_len
|
568 |
+
self.max_mem_len = max_mem_len
|
569 |
+
self.num_tokens = num_tokens
|
570 |
+
|
571 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
572 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
573 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
574 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
575 |
+
|
576 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
577 |
+
self.attn_layers = attn_layers
|
578 |
+
self.norm = nn.LayerNorm(dim)
|
579 |
+
|
580 |
+
self.init_()
|
581 |
+
|
582 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
583 |
+
|
584 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
585 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
586 |
+
self.num_memory_tokens = num_memory_tokens
|
587 |
+
if num_memory_tokens > 0:
|
588 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
589 |
+
|
590 |
+
# let funnel encoder know number of memory tokens, if specified
|
591 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
592 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
593 |
+
|
594 |
+
def init_(self):
|
595 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
596 |
+
|
597 |
+
def forward(
|
598 |
+
self,
|
599 |
+
x,
|
600 |
+
return_embeddings=False,
|
601 |
+
mask=None,
|
602 |
+
return_mems=False,
|
603 |
+
return_attn=False,
|
604 |
+
mems=None,
|
605 |
+
**kwargs
|
606 |
+
):
|
607 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
608 |
+
x = self.token_emb(x)
|
609 |
+
x += self.pos_emb(x)
|
610 |
+
x = self.emb_dropout(x)
|
611 |
+
|
612 |
+
x = self.project_emb(x)
|
613 |
+
|
614 |
+
if num_mem > 0:
|
615 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
616 |
+
x = torch.cat((mem, x), dim=1)
|
617 |
+
|
618 |
+
# auto-handle masking after appending memory tokens
|
619 |
+
if exists(mask):
|
620 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
621 |
+
|
622 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
623 |
+
x = self.norm(x)
|
624 |
+
|
625 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
626 |
+
|
627 |
+
out = self.to_logits(x) if not return_embeddings else x
|
628 |
+
|
629 |
+
if return_mems:
|
630 |
+
hiddens = intermediates.hiddens
|
631 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
632 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
633 |
+
return out, new_mems
|
634 |
+
|
635 |
+
if return_attn:
|
636 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
637 |
+
return out, attn_maps
|
638 |
+
|
639 |
+
return out
|
640 |
+
|
scripts/evaluation/__pycache__/style_inference.cpython-39.pyc
ADDED
Binary file (10.6 kB). View file
|
|
scripts/evaluation/ddp_wrapper.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import datetime, time
|
3 |
+
import argparse, importlib
|
4 |
+
from pytorch_lightning import seed_everything
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.distributed as dist
|
8 |
+
#from inference import run_inference, get_parser
|
9 |
+
|
10 |
+
def setup_dist(local_rank):
|
11 |
+
if dist.is_initialized():
|
12 |
+
return
|
13 |
+
torch.cuda.set_device(local_rank)
|
14 |
+
torch.distributed.init_process_group('nccl', init_method='env://')
|
15 |
+
|
16 |
+
|
17 |
+
def get_dist_info():
|
18 |
+
if dist.is_available():
|
19 |
+
initialized = dist.is_initialized()
|
20 |
+
else:
|
21 |
+
initialized = False
|
22 |
+
if initialized:
|
23 |
+
rank = dist.get_rank()
|
24 |
+
world_size = dist.get_world_size()
|
25 |
+
else:
|
26 |
+
rank = 0
|
27 |
+
world_size = 1
|
28 |
+
return rank, world_size
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == '__main__':
|
32 |
+
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
parser.add_argument("--module", type=str, help="module name", default="inference")
|
35 |
+
parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
|
36 |
+
args, unknown = parser.parse_known_args()
|
37 |
+
inference_api = importlib.import_module(args.module, package=None)
|
38 |
+
|
39 |
+
inference_parser = inference_api.get_parser()
|
40 |
+
inference_args, unknown = inference_parser.parse_known_args()
|
41 |
+
|
42 |
+
seed_everything(inference_args.seed)
|
43 |
+
setup_dist(args.local_rank)
|
44 |
+
torch.backends.cudnn.benchmark = True
|
45 |
+
rank, gpu_num = get_dist_info()
|
46 |
+
|
47 |
+
print("@CoLVDM Inference [rank%d]: %s"%(rank, now))
|
48 |
+
inference_api.run_inference(inference_args, gpu_num, rank)
|
scripts/evaluation/funcs.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, os, sys, glob, yaml, math, random
|
2 |
+
import datetime, time
|
3 |
+
import numpy as np
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from tqdm import trange, tqdm
|
6 |
+
from einops import repeat
|
7 |
+
from collections import OrderedDict
|
8 |
+
from decord import VideoReader, cpu
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torchvision
|
12 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
13 |
+
from lvdm.models.samplers.ddim import DDIMSampler
|
14 |
+
|
15 |
+
|
16 |
+
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
17 |
+
cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
|
18 |
+
ddim_sampler = DDIMSampler(model)
|
19 |
+
uncond_type = model.uncond_type
|
20 |
+
batch_size = noise_shape[0]
|
21 |
+
|
22 |
+
## construct unconditional guidance
|
23 |
+
if cfg_scale != 1.0:
|
24 |
+
if isinstance(cond, dict):
|
25 |
+
c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0]
|
26 |
+
else:
|
27 |
+
text_emb = cond
|
28 |
+
|
29 |
+
if uncond_type == "empty_seq":
|
30 |
+
prompts = batch_size * [""]
|
31 |
+
uc = model.get_learned_conditioning(prompts)
|
32 |
+
elif uncond_type == "zero_embed":
|
33 |
+
uc = torch.zeros_like(text_emb)
|
34 |
+
else:
|
35 |
+
raise NotImplementedError
|
36 |
+
|
37 |
+
## hybrid case
|
38 |
+
if isinstance(cond, dict):
|
39 |
+
uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]}
|
40 |
+
if 'c_adm' in cond:
|
41 |
+
uc_hybrid.update({'c_adm': cond['c_adm']})
|
42 |
+
uc = uc_hybrid
|
43 |
+
else:
|
44 |
+
uc = None
|
45 |
+
|
46 |
+
## sampling
|
47 |
+
batch_variants = []
|
48 |
+
for _ in range(n_samples):
|
49 |
+
if ddim_sampler is not None:
|
50 |
+
kwargs.update({"clean_cond": True})
|
51 |
+
samples, _ = ddim_sampler.sample(S=ddim_steps,
|
52 |
+
conditioning=cond,
|
53 |
+
batch_size=noise_shape[0],
|
54 |
+
shape=noise_shape[1:],
|
55 |
+
verbose=False,
|
56 |
+
unconditional_guidance_scale=cfg_scale,
|
57 |
+
unconditional_conditioning=uc,
|
58 |
+
eta=ddim_eta,
|
59 |
+
temporal_length=noise_shape[2],
|
60 |
+
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
61 |
+
x_T=None,
|
62 |
+
**kwargs
|
63 |
+
)
|
64 |
+
## reconstruct from latent to pixel space
|
65 |
+
batch_images = model.decode_first_stage(samples)
|
66 |
+
batch_variants.append(batch_images)
|
67 |
+
## batch, <samples>, c, t, h, w
|
68 |
+
batch_variants = torch.stack(batch_variants, dim=1)
|
69 |
+
return batch_variants
|
70 |
+
|
71 |
+
|
72 |
+
def batch_sliding_interpolation(model, cond, base_videos, base_stride, noise_shape, n_samples=1,\
|
73 |
+
ddim_steps=50, ddim_eta=1.0, cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
|
74 |
+
'''
|
75 |
+
Current implementation has a flaw: the inter-episode keyframe is used as pre-last and cur-first, so keyframe repeated.
|
76 |
+
For example, cond_frames=[0,4,7], model.temporal_length=8, base_stride=4, then
|
77 |
+
base frame : 0 4 8 12 16 20 24 28
|
78 |
+
interplation: (0~7) (8~15) (16~23) (20~27)
|
79 |
+
'''
|
80 |
+
b,c,t,h,w = noise_shape
|
81 |
+
base_z0 = model.encode_first_stage(base_videos)
|
82 |
+
unit_length = model.temporal_length
|
83 |
+
n_base_frames = base_videos.shape[2]
|
84 |
+
n_refs = len(model.cond_frames)
|
85 |
+
sliding_steps = (n_base_frames-1) // (n_refs-1)
|
86 |
+
sliding_steps = sliding_steps+1 if (n_base_frames-1) % (n_refs-1) > 0 else sliding_steps
|
87 |
+
|
88 |
+
cond_mask = model.cond_mask.to("cuda")
|
89 |
+
proxy_z0 = torch.zeros((b,c,unit_length,h,w), dtype=torch.float32).to("cuda")
|
90 |
+
batch_samples = None
|
91 |
+
last_offset = None
|
92 |
+
for idx in range(sliding_steps):
|
93 |
+
base_idx = idx * (n_refs-1)
|
94 |
+
## check index overflow
|
95 |
+
if base_idx+n_refs > n_base_frames:
|
96 |
+
last_offset = base_idx - (n_base_frames - n_refs)
|
97 |
+
base_idx = n_base_frames - n_refs
|
98 |
+
cond_z0 = base_z0[:,:,base_idx:base_idx+n_refs,:,:]
|
99 |
+
proxy_z0[:,:,model.cond_frames,:,:] = cond_z0
|
100 |
+
|
101 |
+
if isinstance(cond, dict):
|
102 |
+
c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0]
|
103 |
+
episode_idx = idx * unit_length
|
104 |
+
if last_offset is not None:
|
105 |
+
episode_idx = episode_idx - last_offset * base_stride
|
106 |
+
cond_idx = {"c_concat": [c_cat[:,:,episode_idx:episode_idx+unit_length,:,:]], "c_crossattn": [text_emb]}
|
107 |
+
else:
|
108 |
+
cond_idx = cond
|
109 |
+
noise_shape_idx = [b,c,unit_length,h,w]
|
110 |
+
## batch, <samples>, c, t, h, w
|
111 |
+
batch_idx = batch_ddim_sampling(model, cond_idx, noise_shape_idx, n_samples, ddim_steps, ddim_eta, cfg_scale, \
|
112 |
+
temporal_cfg_scale, mask=cond_mask, x0=proxy_z0, **kwargs)
|
113 |
+
|
114 |
+
if batch_samples is None:
|
115 |
+
batch_samples = batch_idx
|
116 |
+
else:
|
117 |
+
## b,s,c,t,h,w
|
118 |
+
if last_offset is None:
|
119 |
+
batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx], dim=3)
|
120 |
+
else:
|
121 |
+
batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx[:,:,:,last_offset * base_stride:,:,:]], dim=3)
|
122 |
+
|
123 |
+
return batch_samples
|
124 |
+
|
125 |
+
|
126 |
+
def get_filelist(data_dir, ext='*'):
|
127 |
+
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
|
128 |
+
file_list.sort()
|
129 |
+
return file_list
|
130 |
+
|
131 |
+
def get_dirlist(path):
|
132 |
+
list = []
|
133 |
+
if (os.path.exists(path)):
|
134 |
+
files = os.listdir(path)
|
135 |
+
for file in files:
|
136 |
+
m = os.path.join(path,file)
|
137 |
+
if (os.path.isdir(m)):
|
138 |
+
list.append(m)
|
139 |
+
list.sort()
|
140 |
+
return list
|
141 |
+
|
142 |
+
|
143 |
+
def load_model_checkpoint(model, ckpt, adapter_ckpt=None):
|
144 |
+
def load_checkpoint(model, ckpt, full_strict):
|
145 |
+
state_dict = torch.load(ckpt, map_location="cpu")
|
146 |
+
try:
|
147 |
+
## deepspeed
|
148 |
+
new_pl_sd = OrderedDict()
|
149 |
+
for key in state_dict['module'].keys():
|
150 |
+
new_pl_sd[key[16:]]=state_dict['module'][key]
|
151 |
+
model.load_state_dict(new_pl_sd, strict=full_strict)
|
152 |
+
except:
|
153 |
+
if "state_dict" in list(state_dict.keys()):
|
154 |
+
state_dict = state_dict["state_dict"]
|
155 |
+
model.load_state_dict(state_dict, strict=full_strict)
|
156 |
+
return model
|
157 |
+
|
158 |
+
if adapter_ckpt:
|
159 |
+
## main model
|
160 |
+
load_checkpoint(model, ckpt, full_strict=False)
|
161 |
+
print('>>> model checkpoint loaded.')
|
162 |
+
## adapter
|
163 |
+
state_dict = torch.load(adapter_ckpt, map_location="cpu")
|
164 |
+
if "state_dict" in list(state_dict.keys()):
|
165 |
+
state_dict = state_dict["state_dict"]
|
166 |
+
model.adapter.load_state_dict(state_dict, strict=True)
|
167 |
+
print('>>> adapter checkpoint loaded.')
|
168 |
+
else:
|
169 |
+
load_checkpoint(model, ckpt, full_strict=True)
|
170 |
+
print('>>> model checkpoint loaded.')
|
171 |
+
return model
|
172 |
+
|
173 |
+
|
174 |
+
def load_prompts(prompt_file):
|
175 |
+
f = open(prompt_file, 'r')
|
176 |
+
prompt_list = []
|
177 |
+
for idx, line in enumerate(f.readlines()):
|
178 |
+
l = line.strip()
|
179 |
+
if len(l) != 0:
|
180 |
+
prompt_list.append(l)
|
181 |
+
f.close()
|
182 |
+
return prompt_list
|
183 |
+
|
184 |
+
|
185 |
+
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
|
186 |
+
'''
|
187 |
+
Notice about some special cases:
|
188 |
+
1. video_frames=-1 means to take all the frames (with fs=1)
|
189 |
+
2. when the total video frames is less than required, padding strategy will be used (repreated last frame)
|
190 |
+
'''
|
191 |
+
fps_list = []
|
192 |
+
batch_tensor = []
|
193 |
+
assert frame_stride > 0, "valid frame stride should be a positive interge!"
|
194 |
+
for filepath in filepath_list:
|
195 |
+
padding_num = 0
|
196 |
+
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
|
197 |
+
fps = vidreader.get_avg_fps()
|
198 |
+
total_frames = len(vidreader)
|
199 |
+
max_valid_frames = (total_frames-1) // frame_stride + 1
|
200 |
+
if video_frames < 0:
|
201 |
+
## all frames are collected: fs=1 is a must
|
202 |
+
required_frames = total_frames
|
203 |
+
frame_stride = 1
|
204 |
+
else:
|
205 |
+
required_frames = video_frames
|
206 |
+
query_frames = min(required_frames, max_valid_frames)
|
207 |
+
frame_indices = [frame_stride*i for i in range(query_frames)]
|
208 |
+
|
209 |
+
## [t,h,w,c] -> [c,t,h,w]
|
210 |
+
frames = vidreader.get_batch(frame_indices)
|
211 |
+
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
|
212 |
+
frame_tensor = (frame_tensor / 255. - 0.5) * 2
|
213 |
+
if max_valid_frames < required_frames:
|
214 |
+
padding_num = required_frames - max_valid_frames
|
215 |
+
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
|
216 |
+
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
|
217 |
+
batch_tensor.append(frame_tensor)
|
218 |
+
sample_fps = int(fps/frame_stride)
|
219 |
+
fps_list.append(sample_fps)
|
220 |
+
|
221 |
+
return torch.stack(batch_tensor, dim=0)
|
222 |
+
|
223 |
+
|
224 |
+
def save_videos(batch_tensors, savedir, filenames, fps=10):
|
225 |
+
# b,samples,c,t,h,w
|
226 |
+
n_samples = batch_tensors.shape[1]
|
227 |
+
for idx, vid_tensor in enumerate(batch_tensors):
|
228 |
+
video = vid_tensor.detach().cpu()
|
229 |
+
video = torch.clamp(video.float(), -1., 1.)
|
230 |
+
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
|
231 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
|
232 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
233 |
+
grid = (grid + 1.0) / 2.0
|
234 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
235 |
+
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
|
236 |
+
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
237 |
+
|