diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..23f414e236f4475ef71a2272ae076cc70c3de154 --- /dev/null +++ b/app.py @@ -0,0 +1,211 @@ +import gradio as gr +import os +import sys +import argparse +import random +import time +from omegaconf import OmegaConf +import torch +import torchvision +from pytorch_lightning import seed_everything +from huggingface_hub import hf_hub_download +from einops import repeat +import torchvision.transforms as transforms +from torchvision.utils import make_grid +from utils.utils import instantiate_from_config + +from collections import OrderedDict + +sys.path.insert(0, "scripts/evaluation") +from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler + + +def load_model_checkpoint(model, ckpt): + state_dict = torch.load(ckpt, map_location="cpu") + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + else: + # deepspeed + state_dict = OrderedDict() + for key in state_dict['module'].keys(): + state_dict[key[16:]]=state_dict['module'][key] + + model.load_state_dict(state_dict, strict=False) + print('>>> model checkpoint loaded.') + return model + + +def download_model(): + REPO_ID = 'VideoCrafter/Text2Video-512' + filename_list = ['model.ckpt'] + os.makedirs('./checkpoints/videocrafter_t2v_320_512/', exist_ok=True) + for filename in filename_list: + local_file = os.path.join('./checkpoints/videocrafter_t2v_320_512/', filename) + if not os.path.exists(local_file): + hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/videocrafter_t2v_320_512/', force_download=True) + + REPO_ID = 'liuhuohuo/StyleCrafter' + filename_list = ['adapter_v1.pth', 'temporal_v1.pth'] + os.makedirs('./checkpoints/stylecrafter', exist_ok=True) + for filename in filename_list: + local_file = os.path.join('./checkpoints/stylecrafter', filename) + if not os.path.exists(local_file): + hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/stylecrafter', force_download=True) + + +def infer(image, prompt, infer_type='image', seed=123, style_strength=1.0, steps=50): + download_model() + ckpt_path = 'checkpoints/videocrafter_t2v_320_512/model.ckpt' + adapter_ckpt_path = 'checkpoints/stylecrafter/adapter_v1.pth' + temporal_ckpt_path = 'checkpoints/stylecrafter/temporal_v1.pth' + if infer_type == 'image': + config_file='configs/inference_image_512_512.yaml' + h, w = 512 // 8, 512 // 8 + unconditional_guidance_scale = 7.5 + unconditional_guidance_scale_style = None + else: + config_file='configs/inference_video_320_512.yaml' + h, w = 320 // 8, 512 // 8 + unconditional_guidance_scale = 15.0 + unconditional_guidance_scale_style = 7.5 + + config = OmegaConf.load(config_file) + model_config = config.pop("model", OmegaConf.create()) + model_config['params']['adapter_config']['params']['scale'] = style_strength + + + model = instantiate_from_config(model_config) + model = model.cuda() + + # load ckpt + assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" + assert os.path.exists(adapter_ckpt_path), "Error: adapter checkpoint Not Found!" + assert os.path.exists(temporal_ckpt_path), "Error: temporal checkpoint Not Found!" + model = load_model_checkpoint(model, ckpt_path) + model.load_pretrained_adapter(adapter_ckpt_path) + if infer_type == 'video': + model.load_pretrained_temporal(temporal_ckpt_path) + model.eval() + + + seed_everything(seed) + + batch_size=1 + channels = model.channels + frames = model.temporal_length if infer_type == 'video' else 1 + noise_shape = [batch_size, channels, frames, h, w] + + # text cond + cond = model.get_learned_conditioning([prompt]) + neg_prompt = batch_size * [""] + uc = model.get_learned_conditioning(neg_prompt) + + # style cond + style_transforms = torchvision.transforms.Compose([ + torchvision.transforms.Resize(512), + torchvision.transforms.CenterCrop(512), + torchvision.transforms.ToTensor(), + torchvision.transforms.Lambda(lambda x: x * 2. - 1.), + ]) + + style_img = style_transforms(image).unsqueeze(0).cuda() + style_cond = model.get_batch_style(style_img) + append_to_context = model.adapter(style_cond) + + scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1)) + + ddim_sampler = DDIMSampler(model) if infer_type == 'image' else DDIMStyleSampler(model) + + samples, _ = ddim_sampler.sample(S=steps, + conditioning=cond, + batch_size=noise_shape[0], + shape=noise_shape[1:], + verbose=False, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_guidance_scale_style=unconditional_guidance_scale_style, + unconditional_conditioning=uc, + eta=1.0, + temporal_length=noise_shape[2], + append_to_context=append_to_context, + scale_scalar=scale_scalar + ) + samples = model.decode_first_stage(samples) + + if infer_type == 'image': + samples = samples[:, :, 0, :, :].detach().cpu() + out_path = "./output.png" + torchvision.utils.save_image(samples, out_path, nrow=1, normalize=True, range=(-1, 1)) + + elif infer_type == 'video': + samples = samples.detach().cpu() + out_path = "./output.mp4" + video = torch.clamp(samples, -1, 1) + video = video.permute(2, 0, 1, 3, 4) # [T, B, C, H, W] + frame_grids = [torchvision.utils.make_grid(video[t], nrow=1) for t in range(video.shape[0])] + grid = torch.stack(frame_grids, dim=0) + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).permute(0, 2, 3, 1).numpy().astype('uint8') + torchvision.io.write_video(out_path, grid, fps=8, video_codec='h264', options={'crf': '10'}) + + + return out_path + + +def read_content(file_path: str) -> str: + """read the content of target file + """ + with open(file_path, 'r', encoding='utf-8') as f: + content = f.read() + + return content + + +demo_exaples = [ + ['eval_data/3d_1.png', 'A bouquet of flowers in a vase.', 'image', 123, 1.0, 50], + ['eval_data/craft_1.png', 'A modern cityscape with towering skyscrapers.', 'image', 124, 1.0, 50], + ['eval_data/digital_art_2.jpeg', 'A lighthouse standing tall on a rocky coast.', 'image', 123, 1.0, 50], + ['eval_data/oil_paint_2.jpg', 'A man playing the guitar on a city street.', 'image', 123, 1.0, 50], + ['eval_data/craft_2.jpg', 'City street at night with bright lights and busy traffic.', 'video', 123, 1.0, 50], + ['eval_data/anime_1.jpg', 'A field of sunflowers on a sunny day.', 'video', 123, 1.0, 50], + ['eval_data/ink_2.jpeg', 'A knight riding a horse through a field.', 'video', 123, 1.0, 50], + ['eval_data/oil_paint_2.jpg', 'A street performer playing the guitar.', 'video', 121, 1.0, 50], + ['eval_data/icon_1.png', 'A campfire surrounded by tents.', 'video', 123, 1.0, 50], +] +css = """ +#input_img {max-height: 512px} +#output_vid {max-width: 512px;} +""" + +with gr.Blocks(analytics_enabled=False, css=css) as demo_iface: + gr.HTML(read_content("header.html")) + + with gr.Tab(label='Stylized Generation'): + with gr.Column(): + with gr.Row(): + with gr.Column(): + with gr.Row(): + input_style_ref = gr.Image(label="Style Reference",elem_id="input_img") + with gr.Row(): + input_prompt = gr.Text(label='Prompts') + with gr.Row(): + input_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123) + input_style_strength = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, label='Style Strength', value=1.0) + with gr.Row(): + input_step = gr.Slider(minimum=1, maximum=75, step=1, elem_id="i2v_steps", label="Sampling steps", value=50) + input_type = gr.Radio(choices=["image", "video"], label="Generation Type", value="image") + input_end_btn = gr.Button("Generate") + # with gr.Tab(label='Result'): + with gr.Row(): + output_result = gr.Video(label="Generated Results",elem_id="output_vid",autoplay=True,show_share_button=True) + + gr.Examples(examples=demo_exaples, + inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step], + outputs=[output_result], + fn = infer, + ) + input_end_btn.click(inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step], + outputs=[output_result], + fn = infer + ) + +demo_iface.queue(max_size=12).launch(show_api=True) \ No newline at end of file diff --git a/configs/inference_image_512_512.yaml b/configs/inference_image_512_512.yaml new file mode 100644 index 0000000000000000000000000000000000000000..01e3ecd14d27fc7db9bd935c63aee5c0244a47b2 --- /dev/null +++ b/configs/inference_image_512_512.yaml @@ -0,0 +1,118 @@ +model: + target: lvdm.models.ddpm3d_cond.T2IAdapterStyleAS + params: + linear_start: 0.00085 + linear_end: 0.012 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: video + cond_stage_key: caption + cond_stage_trainable: false + conditioning_key: crossattn + image_size: [64, 64] + channels: 4 + #monitor: val/loss_simple + scale_by_std: false + scale_factor: 0.18215 + # training related + use_ema: false + uncond_prob: 0.0 + uncond_type: 'empty_seq' + scheduler_config: + target: utils.lr_scheduler.LambdaLRScheduler + interval: 'step' + frequency: 100 + params: + start_step: 0 + final_decay_ratio: 0.01 + decay_steps: 20000 + + unet_config: + target: lvdm.modules.networks.openaimodel3d.UNet2DModel + params: + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [4, 2, 1] + num_res_blocks: 2 + channel_mult: [1, 2, 4, 4] + #num_heads: 8 + num_head_channels: 64 # need to fix for flash-attn + transformer_depth: 1 + context_dim: 1024 + use_linear: true + use_checkpoint: true + temporal_conv: false + temporal_attention: true + temporal_selfatt_only: true + use_relative_position: true + use_causal_attention: false + temporal_length: 16 + addition_attention: true + + first_stage_config: + target: lvdm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: [1, 2, 4, 4] + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder + params: + freeze: true + layer: "penultimate" + # version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin + + style_stage_config: + target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedder + params: + # version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin + freeze: true + only_cls: false + use_proj: false + use_shuffle: false + mask_ratio: 0.0 + + adapter_config: + target: lvdm.modules.encoders.adapter.StyleAdapterDualAttnAS + cond_name: style + trainable: true + params: + scale: 1.0 + use_norm: true + image_context_config: + target: lvdm.modules.encoders.adapter.StyleTransformer + params: + in_dim: 1280 + out_dim: 1024 + num_heads: 8 + num_tokens: 8 + n_layers: 3 + scale_predictor_config: + target: lvdm.modules.encoders.adapter.ScaleEncoder + params: + in_dim: 1024 + out_dim: 1 + num_heads: 8 + num_tokens: 16 + n_layers: 2 + # target: lvdm.modules.encoders.adapter.ImageContext + # params: + # width: 1024 + # context_dim: 1024 + # token_num: 4 + \ No newline at end of file diff --git a/configs/inference_video_320_512.yaml b/configs/inference_video_320_512.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f6d11d0e090fd2a4113cb9733dd92fc589ed5add --- /dev/null +++ b/configs/inference_video_320_512.yaml @@ -0,0 +1,122 @@ +model: + target: lvdm.models.ddpm3d_cond.T2VFintoneStyleAS + params: + linear_start: 0.00085 + linear_end: 0.012 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: video + cond_stage_key: caption + cond_stage_trainable: false + conditioning_key: crossattn + image_size: [64, 64] + channels: 4 + #monitor: val/loss_simple + scale_by_std: false + scale_factor: 0.18215 + # training related + use_ema: false + uncond_prob: 0.0 + uncond_type: 'empty_seq' + + + scheduler_config: + target: utils.lr_scheduler.LambdaLRScheduler + interval: 'step' + frequency: 100 + params: + start_step: 0 + final_decay_ratio: 0.01 + decay_steps: 20000 + + # train_strategy: 'video_only' + + unet_config: + target: lvdm.modules.networks.openaimodel3d.UNetModel + params: + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [4, 2, 1] + num_res_blocks: 2 + channel_mult: [1, 2, 4, 4] + #num_heads: 8 + num_head_channels: 64 # need to fix for flash-attn + transformer_depth: 1 + context_dim: 1024 + use_linear: true + use_checkpoint: true + temporal_conv: false + temporal_attention: true + temporal_selfatt_only: true + use_relative_position: true + use_causal_attention: false + temporal_length: 16 + addition_attention: true + + first_stage_config: + target: lvdm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: [1, 2, 4, 4] + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder + params: + version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin + freeze: true + layer: "penultimate" + + style_stage_config: + target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedder + params: + version: checkpoints/open_clip/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin + freeze: true + only_cls: false + use_proj: false + use_shuffle: false + mask_ratio: 0.0 + + adapter_config: + target: lvdm.modules.encoders.adapter.StyleAdapterDualAttnAS + cond_name: style + trainable: true + params: + scale: 1.0 + use_norm: true + image_context_config: + target: lvdm.modules.encoders.adapter.StyleTransformer + params: + in_dim: 1280 + out_dim: 1024 + num_heads: 8 + num_tokens: 8 + n_layers: 3 + scale_predictor_config: + target: lvdm.modules.encoders.adapter.ScaleEncoder + params: + in_dim: 1024 + out_dim: 1 + num_heads: 8 + num_tokens: 16 + n_layers: 2 + # target: lvdm.modules.encoders.adapter.ImageContext + # params: + # width: 1024 + # context_dim: 1024 + # token_num: 4 + \ No newline at end of file diff --git a/eval_data/3d_1.png b/eval_data/3d_1.png new file mode 100644 index 0000000000000000000000000000000000000000..89328eaac12832a554a0fa120fb485b17805c579 Binary files /dev/null and b/eval_data/3d_1.png differ diff --git a/eval_data/anime_1.jpg b/eval_data/anime_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e47149a1f343e86aa741cd890748a8cb9e17b628 Binary files /dev/null and b/eval_data/anime_1.jpg differ diff --git a/eval_data/craft_1.jpg b/eval_data/craft_1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..aa0e5f646e169f233247da22b902f083d2510399 Binary files /dev/null and b/eval_data/craft_1.jpg differ diff --git a/eval_data/craft_2.png b/eval_data/craft_2.png new file mode 100644 index 0000000000000000000000000000000000000000..e6eeb02fad17e2c03be84be31e7508b440ddb80e Binary files /dev/null and b/eval_data/craft_2.png differ diff --git a/eval_data/digital_art_2.jpeg b/eval_data/digital_art_2.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..1efc72fd02eec874ab638ce21d1be9656818fb16 Binary files /dev/null and b/eval_data/digital_art_2.jpeg differ diff --git a/eval_data/icon_1.png b/eval_data/icon_1.png new file mode 100644 index 0000000000000000000000000000000000000000..aa34b21b277b49a49a09fd18e62382f5eae518e9 Binary files /dev/null and b/eval_data/icon_1.png differ diff --git a/eval_data/ink_2.jpeg b/eval_data/ink_2.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..e5c214f0e13c0376b83492664917570559d6508e Binary files /dev/null and b/eval_data/ink_2.jpeg differ diff --git a/eval_data/oil_paint_2.jpg b/eval_data/oil_paint_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82e523e1cfa5a40e41eaa47258bfd7c7a15e3145 Binary files /dev/null and b/eval_data/oil_paint_2.jpg differ diff --git a/header.html b/header.html new file mode 100644 index 0000000000000000000000000000000000000000..342de756ed503b836c771860f355410395909e83 --- /dev/null +++ b/header.html @@ -0,0 +1,36 @@ + + +
+
+

+ StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter +

+
+ +   + +
+

+ This is a online demo for StyleCrafter, a model that can generate images/videos with your favorite style. +

+

+ You can upload your own style image and text description, and StyleCrafter will intelligently combine the style elements from the image and the text to create a unique and visually appealing output. +

+
+ +   + +
+ + + +
+ +
\ No newline at end of file diff --git a/lvdm/__pycache__/basics.cpython-39.pyc b/lvdm/__pycache__/basics.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..77719833258b3a45939d75388e4d83f53928e9db Binary files /dev/null and b/lvdm/__pycache__/basics.cpython-39.pyc differ diff --git a/lvdm/__pycache__/common.cpython-39.pyc b/lvdm/__pycache__/common.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72baee08d6810baa2cbff614b885f1d59e17aa03 Binary files /dev/null and b/lvdm/__pycache__/common.cpython-39.pyc differ diff --git a/lvdm/__pycache__/distributions.cpython-39.pyc b/lvdm/__pycache__/distributions.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..741802a65f21d5cbf6b0f7cb9845b24f5f159d38 Binary files /dev/null and b/lvdm/__pycache__/distributions.cpython-39.pyc differ diff --git a/lvdm/__pycache__/ema.cpython-39.pyc b/lvdm/__pycache__/ema.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b84e899b225cfe87b02d2b1c8cb2156d0bde6ae Binary files /dev/null and b/lvdm/__pycache__/ema.cpython-39.pyc differ diff --git a/lvdm/basics.py b/lvdm/basics.py new file mode 100644 index 0000000000000000000000000000000000000000..65c771d13a7f4a932ac370f08797a8b6ba9e85ff --- /dev/null +++ b/lvdm/basics.py @@ -0,0 +1,100 @@ +# adopted from +# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py +# and +# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +# and +# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py +# +# thanks! + +import torch.nn as nn +from utils.utils import instantiate_from_config + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + +def zero_module(module): + """ + Zero out the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().zero_() + return module + +def scale_module(module, scale): + """ + Scale the parameters of a module and return it. + """ + for p in module.parameters(): + p.detach().mul_(scale) + return module + + +def conv_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D convolution module. + """ + if dims == 1: + return nn.Conv1d(*args, **kwargs) + elif dims == 2: + return nn.Conv2d(*args, **kwargs) + elif dims == 3: + return nn.Conv3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def linear(*args, **kwargs): + """ + Create a linear module. + """ + return nn.Linear(*args, **kwargs) + + +def avg_pool_nd(dims, *args, **kwargs): + """ + Create a 1D, 2D, or 3D average pooling module. + """ + if dims == 1: + return nn.AvgPool1d(*args, **kwargs) + elif dims == 2: + return nn.AvgPool2d(*args, **kwargs) + elif dims == 3: + return nn.AvgPool3d(*args, **kwargs) + raise ValueError(f"unsupported dimensions: {dims}") + + +def nonlinearity(type='silu'): + if type == 'silu': + return nn.SiLU() + elif type == 'leaky_relu': + return nn.LeakyReLU() + + +class GroupNormSpecific(nn.GroupNorm): + def forward(self, x): + return super().forward(x.float()).type(x.dtype) + + +def normalization(channels, num_groups=32): + """ + Make a standard normalization layer. + :param channels: number of input channels. + :return: an nn.Module for normalization. + """ + return GroupNormSpecific(num_groups, channels) + + +class HybridConditioner(nn.Module): + + def __init__(self, c_concat_config, c_crossattn_config): + super().__init__() + self.concat_conditioner = instantiate_from_config(c_concat_config) + self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) + + def forward(self, c_concat, c_crossattn): + c_concat = self.concat_conditioner(c_concat) + c_crossattn = self.crossattn_conditioner(c_crossattn) + return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} \ No newline at end of file diff --git a/lvdm/common.py b/lvdm/common.py new file mode 100644 index 0000000000000000000000000000000000000000..35569b25aa97236d7d083d8b6ef0c0f3187c2388 --- /dev/null +++ b/lvdm/common.py @@ -0,0 +1,95 @@ +import math +from inspect import isfunction +import torch +from torch import nn +import torch.distributed as dist + + +def gather_data(data, return_np=True): + ''' gather data from multiple processes to one list ''' + data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())] + dist.all_gather(data_list, data) # gather not supported with NCCL + if return_np: + data_list = [data.cpu().numpy() for data in data_list] + return data_list + +def autocast(f): + def do_autocast(*args, **kwargs): + with torch.cuda.amp.autocast(enabled=True, + dtype=torch.get_autocast_gpu_dtype(), + cache_enabled=torch.is_autocast_cache_enabled()): + return f(*args, **kwargs) + return do_autocast + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +def noise_like(shape, device, repeat=False): + repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) + noise = lambda: torch.randn(shape, device=device) + return repeat_noise() if repeat else noise() + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + +def exists(val): + return val is not None + +def identity(*args, **kwargs): + return nn.Identity() + +def uniq(arr): + return{el: True for el in arr}.keys() + +def mean_flat(tensor): + """ + Take the mean over all non-batch dimensions. + """ + return tensor.mean(dim=list(range(1, len(tensor.shape)))) + +def ismap(x): + if not isinstance(x, torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] > 3) + +def isimage(x): + if not isinstance(x,torch.Tensor): + return False + return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) + +def max_neg_value(t): + return -torch.finfo(t.dtype).max + +def shape_to_str(x): + shape_str = "x".join([str(x) for x in x.shape]) + return shape_str + +def init_(tensor): + dim = tensor.shape[-1] + std = 1 / math.sqrt(dim) + tensor.uniform_(-std, std) + return tensor + +ckpt = torch.utils.checkpoint.checkpoint +def checkpoint(func, inputs, params, flag): + """ + Evaluate a function without caching intermediate activations, allowing for + reduced memory at the expense of extra compute in the backward pass. + :param func: the function to evaluate. + :param inputs: the argument sequence to pass to `func`. + :param params: a sequence of parameters `func` depends on but does not + explicitly take as arguments. + :param flag: if False, disable gradient checkpointing. + """ + if flag: + return ckpt(func, *inputs) + else: + return func(*inputs) + diff --git a/lvdm/distributions.py b/lvdm/distributions.py new file mode 100644 index 0000000000000000000000000000000000000000..0b69b6984880ec24279b658384ed8031335e3474 --- /dev/null +++ b/lvdm/distributions.py @@ -0,0 +1,95 @@ +import torch +import numpy as np + + +class AbstractDistribution: + def sample(self): + raise NotImplementedError() + + def mode(self): + raise NotImplementedError() + + +class DiracDistribution(AbstractDistribution): + def __init__(self, value): + self.value = value + + def sample(self): + return self.value + + def mode(self): + return self.value + + +class DiagonalGaussianDistribution(object): + def __init__(self, parameters, deterministic=False): + self.parameters = parameters + self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) + self.logvar = torch.clamp(self.logvar, -30.0, 20.0) + self.deterministic = deterministic + self.std = torch.exp(0.5 * self.logvar) + self.var = torch.exp(self.logvar) + if self.deterministic: + self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) + + def sample(self, noise=None): + if noise is None: + noise = torch.randn(self.mean.shape) + + x = self.mean + self.std * noise.to(device=self.parameters.device) + return x + + def kl(self, other=None): + if self.deterministic: + return torch.Tensor([0.]) + else: + if other is None: + return 0.5 * torch.sum(torch.pow(self.mean, 2) + + self.var - 1.0 - self.logvar, + dim=[1, 2, 3]) + else: + return 0.5 * torch.sum( + torch.pow(self.mean - other.mean, 2) / other.var + + self.var / other.var - 1.0 - self.logvar + other.logvar, + dim=[1, 2, 3]) + + def nll(self, sample, dims=[1,2,3]): + if self.deterministic: + return torch.Tensor([0.]) + logtwopi = np.log(2.0 * np.pi) + return 0.5 * torch.sum( + logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, + dim=dims) + + def mode(self): + return self.mean + + +def normal_kl(mean1, logvar1, mean2, logvar2): + """ + source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12 + Compute the KL divergence between two gaussians. + Shapes are automatically broadcasted, so batches can be compared to + scalars, among other use cases. + """ + tensor = None + for obj in (mean1, logvar1, mean2, logvar2): + if isinstance(obj, torch.Tensor): + tensor = obj + break + assert tensor is not None, "at least one argument must be a Tensor" + + # Force variances to be Tensors. Broadcasting helps convert scalars to + # Tensors, but it does not work for torch.exp(). + logvar1, logvar2 = [ + x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor) + for x in (logvar1, logvar2) + ] + + return 0.5 * ( + -1.0 + + logvar2 + - logvar1 + + torch.exp(logvar1 - logvar2) + + ((mean1 - mean2) ** 2) * torch.exp(-logvar2) + ) diff --git a/lvdm/ema.py b/lvdm/ema.py new file mode 100644 index 0000000000000000000000000000000000000000..c8c75af43565f6e140287644aaaefa97dd6e67c5 --- /dev/null +++ b/lvdm/ema.py @@ -0,0 +1,76 @@ +import torch +from torch import nn + + +class LitEma(nn.Module): + def __init__(self, model, decay=0.9999, use_num_upates=True): + super().__init__() + if decay < 0.0 or decay > 1.0: + raise ValueError('Decay must be between 0 and 1') + + self.m_name2s_name = {} + self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) + self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates + else torch.tensor(-1,dtype=torch.int)) + + for name, p in model.named_parameters(): + if p.requires_grad: + #remove as '.'-character is not allowed in buffers + s_name = name.replace('.','') + self.m_name2s_name.update({name:s_name}) + self.register_buffer(s_name,p.clone().detach().data) + + self.collected_params = [] + + def forward(self,model): + decay = self.decay + + if self.num_updates >= 0: + self.num_updates += 1 + decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) + + one_minus_decay = 1.0 - decay + + with torch.no_grad(): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + + for key in m_param: + if m_param[key].requires_grad: + sname = self.m_name2s_name[key] + shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) + shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) + else: + assert not key in self.m_name2s_name + + def copy_to(self, model): + m_param = dict(model.named_parameters()) + shadow_params = dict(self.named_buffers()) + for key in m_param: + if m_param[key].requires_grad: + m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) + else: + assert not key in self.m_name2s_name + + def store(self, parameters): + """ + Save the current parameters for restoring later. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + temporarily stored. + """ + self.collected_params = [param.clone() for param in parameters] + + def restore(self, parameters): + """ + Restore the parameters stored with the `store` method. + Useful to validate the model with EMA parameters without affecting the + original optimization process. Store the parameters before the + `copy_to` method. After validation (or model saving), use this to + restore the former parameters. + Args: + parameters: Iterable of `torch.nn.Parameter`; the parameters to be + updated with the stored parameters. + """ + for c_param, param in zip(self.collected_params, parameters): + param.data.copy_(c_param.data) diff --git a/lvdm/models/__pycache__/autoencoder.cpython-39.pyc b/lvdm/models/__pycache__/autoencoder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..031d18cdfacc78c66477b6c1b0404b19f6159448 Binary files /dev/null and b/lvdm/models/__pycache__/autoencoder.cpython-39.pyc differ diff --git a/lvdm/models/__pycache__/ddpm3d.cpython-39.pyc b/lvdm/models/__pycache__/ddpm3d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6502f0edde5e5da1a6e25f77d655dcbeb55053f Binary files /dev/null and b/lvdm/models/__pycache__/ddpm3d.cpython-39.pyc differ diff --git a/lvdm/models/__pycache__/ddpm3d_cond.cpython-39.pyc b/lvdm/models/__pycache__/ddpm3d_cond.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a819bc3eed1a356c6cf032d53c4ab4730b40156 Binary files /dev/null and b/lvdm/models/__pycache__/ddpm3d_cond.cpython-39.pyc differ diff --git a/lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc b/lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f939b56a0eac01c2bd48dab9e180e0e7007032b9 Binary files /dev/null and b/lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc differ diff --git a/lvdm/models/autoencoder.py b/lvdm/models/autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..cc479d8b446b530885f4a3cc5d25cb58f0c00d74 --- /dev/null +++ b/lvdm/models/autoencoder.py @@ -0,0 +1,219 @@ +import os +from contextlib import contextmanager +import torch +import numpy as np +from einops import rearrange +import torch.nn.functional as F +import pytorch_lightning as pl +from lvdm.modules.networks.ae_modules import Encoder, Decoder +from lvdm.distributions import DiagonalGaussianDistribution +from utils.utils import instantiate_from_config + + +class AutoencoderKL(pl.LightningModule): + def __init__(self, + ddconfig, + lossconfig, + embed_dim, + ckpt_path=None, + ignore_keys=[], + image_key="image", + colorize_nlabels=None, + monitor=None, + test=False, + logdir=None, + input_dim=4, + test_args=None, + ): + super().__init__() + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + self.loss = instantiate_from_config(lossconfig) + assert ddconfig["double_z"] + self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + self.embed_dim = embed_dim + self.input_dim = input_dim + self.test = test + self.test_args = test_args + self.logdir = logdir + if colorize_nlabels is not None: + assert type(colorize_nlabels)==int + self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + if monitor is not None: + self.monitor = monitor + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + if self.test: + self.init_test() + + def init_test(self,): + self.test = True + save_dir = os.path.join(self.logdir, "test") + if 'ckpt' in self.test_args: + ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}' + self.root = os.path.join(save_dir, ckpt_name) + else: + self.root = save_dir + if 'test_subdir' in self.test_args: + self.root = os.path.join(save_dir, self.test_args.test_subdir) + + self.root_zs = os.path.join(self.root, "zs") + self.root_dec = os.path.join(self.root, "reconstructions") + self.root_inputs = os.path.join(self.root, "inputs") + os.makedirs(self.root, exist_ok=True) + + if self.test_args.save_z: + os.makedirs(self.root_zs, exist_ok=True) + if self.test_args.save_reconstruction: + os.makedirs(self.root_dec, exist_ok=True) + if self.test_args.save_input: + os.makedirs(self.root_inputs, exist_ok=True) + assert(self.test_args is not None) + self.test_maximum = getattr(self.test_args, 'test_maximum', None) + self.count = 0 + self.eval_metrics = {} + self.decodes = [] + self.save_decode_samples = 2048 + + def init_from_ckpt(self, path, ignore_keys=list()): + sd = torch.load(path, map_location="cpu") + try: + self._cur_epoch = sd['epoch'] + sd = sd["state_dict"] + except: + self._cur_epoch = 'null' + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + self.load_state_dict(sd, strict=False) + # self.load_state_dict(sd, strict=True) + print(f"Restored from {path}") + + def encode(self, x, **kwargs): + + h = self.encoder(x) + moments = self.quant_conv(h) + posterior = DiagonalGaussianDistribution(moments) + return posterior + + def decode(self, z, **kwargs): + z = self.post_quant_conv(z) + dec = self.decoder(z) + return dec + + def forward(self, input, sample_posterior=True): + posterior = self.encode(input) + if sample_posterior: + z = posterior.sample() + else: + z = posterior.mode() + dec = self.decode(z) + return dec, posterior + + def get_input(self, batch, k): + x = batch[k] + if x.dim() == 5 and self.input_dim == 4: + b,c,t,h,w = x.shape + self.b = b + self.t = t + x = rearrange(x, 'b c t h w -> (b t) c h w') + + return x + + def training_step(self, batch, batch_idx, optimizer_idx): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + + if optimizer_idx == 0: + # train encoder+decoder+logvar + aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train") + self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) + self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) + return aeloss + + if optimizer_idx == 1: + # train the discriminator + discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train") + + self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) + self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) + return discloss + + def validation_step(self, batch, batch_idx): + inputs = self.get_input(batch, self.image_key) + reconstructions, posterior = self(inputs) + aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, + last_layer=self.get_last_layer(), split="val") + + discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, + last_layer=self.get_last_layer(), split="val") + + self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) + self.log_dict(log_dict_ae) + self.log_dict(log_dict_disc) + return self.log_dict + + def configure_optimizers(self): + lr = self.learning_rate + opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ + list(self.decoder.parameters())+ + list(self.quant_conv.parameters())+ + list(self.post_quant_conv.parameters()), + lr=lr, betas=(0.5, 0.9)) + opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), + lr=lr, betas=(0.5, 0.9)) + return [opt_ae, opt_disc], [] + + def get_last_layer(self): + return self.decoder.conv_out.weight + + @torch.no_grad() + def log_images(self, batch, only_inputs=False, **kwargs): + log = dict() + x = self.get_input(batch, self.image_key) + x = x.to(self.device) + if not only_inputs: + xrec, posterior = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec.shape[1] > 3 + x = self.to_rgb(x) + xrec = self.to_rgb(xrec) + log["samples"] = self.decode(torch.randn_like(posterior.sample())) + log["reconstructions"] = xrec + log["inputs"] = x + return log + + def to_rgb(self, x): + assert self.image_key == "segmentation" + if not hasattr(self, "colorize"): + self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) + x = F.conv2d(x, weight=self.colorize) + x = 2.*(x-x.min())/(x.max()-x.min()) - 1. + return x + +class IdentityFirstStage(torch.nn.Module): + def __init__(self, *args, vq_interface=False, **kwargs): + self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff + super().__init__() + + def encode(self, x, *args, **kwargs): + return x + + def decode(self, x, *args, **kwargs): + return x + + def quantize(self, x, *args, **kwargs): + if self.vq_interface: + return x, None, [None, None, None] + return x + + def forward(self, x, *args, **kwargs): + return x diff --git a/lvdm/models/ddpm3d.py b/lvdm/models/ddpm3d.py new file mode 100644 index 0000000000000000000000000000000000000000..0d8286e3082804be95394f7f75e787897b9152de --- /dev/null +++ b/lvdm/models/ddpm3d.py @@ -0,0 +1,781 @@ +""" +wild mixture of +https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py +https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +https://github.com/CompVis/taming-transformers +-- merci +""" + +from functools import partial +from contextlib import contextmanager +import numpy as np +from tqdm import tqdm +from einops import rearrange, repeat +import logging +mainlogger = logging.getLogger('mainlogger') +import torch +import torch.nn as nn +from torchvision.utils import make_grid +import pytorch_lightning as pl +from utils.utils import instantiate_from_config +from lvdm.ema import LitEma +from lvdm.distributions import DiagonalGaussianDistribution +from lvdm.models.utils_diffusion import make_beta_schedule +from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler +from lvdm.basics import disabled_train +from lvdm.common import ( + extract_into_tensor, + noise_like, + exists, + default +) + + +__conditioning_keys__ = {'concat': 'c_concat', + 'crossattn': 'c_crossattn', + 'adm': 'y'} + +class DDPM(pl.LightningModule): + # classic DDPM with Gaussian diffusion, in image space + def __init__(self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor=None, + use_ema=True, + first_stage_key="image", + image_size=256, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0., + v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1., + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0. + ): + super().__init__() + assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' + self.parameterization = parameterization + mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + self.channels = channels + self.temporal_length = unet_config.params.temporal_length + self.image_size = image_size + if isinstance(self.image_size, int): + self.image_size = [self.image_size, self.image_size] + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapper(unet_config, conditioning_key) + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self.model) + mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + + self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, + linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + + + def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( + 1. - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer('posterior_variance', to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) + self.register_buffer('posterior_mean_coef1', to_torch( + betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) + self.register_buffer('posterior_mean_coef2', to_torch( + (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) + + if self.parameterization == "eps": + lvlb_weights = self.betas ** 2 / ( + 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) + elif self.parameterization == "x0": + lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) + else: + raise NotImplementedError("mu not supported") + # TODO how to choose this term + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + mainlogger.info(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + mainlogger.info(f"{context}: Restored training weights") + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + mainlogger.info("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( + sd, strict=False) + mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") + if len(missing) > 0: + mainlogger.info(f"Missing Keys: {missing}") + if len(unexpected) > 0: + mainlogger.info(f"Unexpected Keys: {unexpected}") + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - + extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1., 1.) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): + img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + image_size = self.image_size + channels = self.channels + return self.p_sample_loop((batch_size, channels, image_size, image_size), + return_intermediates=return_intermediates) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start * + extract_into_tensor(self.scale_arr, t, x_start.shape) + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + + def get_input(self, batch, k): + x = batch[k] + x = x.to(memory_format=torch.contiguous_format).float() + return x + + def _get_rows_from_list(self, samples): + n_imgs_per_row = len(samples) + denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): + log = dict() + x = self.get_input(batch, self.first_stage_key) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + x = x.to(self.device)[:N] + log["inputs"] = x + + # get diffusion row + diffusion_row = list() + x_start = x[:n_row] + + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(x_start) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + diffusion_row.append(x_noisy) + + log["diffusion_row"] = self._get_rows_from_list(diffusion_row) + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) + + log["samples"] = samples + log["denoise_row"] = self._get_rows_from_list(denoise_row) + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + +class LatentDiffusion(DDPM): + """main class""" + def __init__(self, + first_stage_config, + cond_stage_config, + num_timesteps_cond=None, + cond_stage_key="caption", + cond_stage_trainable=False, + cond_stage_forward=None, + conditioning_key=None, + uncond_prob=0.2, + uncond_type="empty_seq", + scale_factor=1.0, + scale_by_std=False, + encoder_type="2d", + only_model=False, + use_scale=False, + scale_a=1, + scale_b=0.3, + mid_step=400, + fix_scale_bug=False, + perframe_ae=True, + *args, **kwargs): + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs['timesteps'] + # for backwards compatibility after implementation of DiffusionWrapper + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", []) + conditioning_key = default(conditioning_key, 'crossattn') + super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + + self.cond_stage_trainable = cond_stage_trainable + self.cond_stage_key = cond_stage_key + self.perframe_ae = perframe_ae + + # scale factor + self.use_scale=use_scale + if self.use_scale: + self.scale_a=scale_a + self.scale_b=scale_b + if fix_scale_bug: + scale_step=self.num_timesteps-mid_step + else: #bug + scale_step = self.num_timesteps + + scale_arr1 = np.linspace(scale_a, scale_b, mid_step) + scale_arr2 = np.full(scale_step, scale_b) + scale_arr = np.concatenate((scale_arr1, scale_arr2)) + scale_arr_prev = np.append(scale_a, scale_arr[:-1]) + to_torch = partial(torch.tensor, dtype=torch.float32) + self.register_buffer('scale_arr', to_torch(scale_arr)) + + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer('scale_factor', torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.first_stage_config = first_stage_config + self.cond_stage_config = cond_stage_config + self.clip_denoised = False + + self.cond_stage_forward = cond_stage_forward + self.encoder_type = encoder_type + assert(encoder_type in ["2d", "3d"]) + self.uncond_prob = uncond_prob + self.classifier_free_guidance = True if uncond_prob > 0 else False + assert(uncond_type in ["zero_embed", "empty_seq"]) + self.uncond_type = uncond_type + + + self.restarted_from_ckpt = False + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) + self.restarted_from_ckpt = True + + + def make_cond_schedule(self, ): + self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) + ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() + self.cond_ids[:self.num_timesteps_cond] = ids + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + if self.use_scale: + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start * + extract_into_tensor(self.scale_arr, t, x_start.shape) + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + else: + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + + + def _freeze_model(self): + for name, para in self.model.diffusion_model.named_parameters(): + para.requires_grad = False + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + model = instantiate_from_config(config) + self.cond_stage_model = model + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def get_first_stage_encoding(self, encoder_posterior, noise=None): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample(noise=noise) + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") + return self.scale_factor * z + + @torch.no_grad() + def encode_first_stage(self, x): + if self.encoder_type == "2d" and x.dim() == 5 and not self.perframe_ae: + b, _, t, _, _ = x.shape + x = rearrange(x, 'b c t h w -> (b t) c h w') + reshape_back = True + else: + reshape_back = False + + if not self.perframe_ae: + encoder_posterior = self.first_stage_model.encode(x) + results = self.get_first_stage_encoding(encoder_posterior).detach() + else: + results = [] + for index in range(x.shape[2]): + frame_batch = self.first_stage_model.encode(x[:,:,index,:,:]) + frame_result = self.get_first_stage_encoding(frame_batch).detach() + results.append(frame_result) + results = torch.stack(results, dim=2) + + if reshape_back: + results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) + + return results + + @torch.no_grad() + def encode_first_stage_2DAE(self, x): + + b, _, t, _, _ = x.shape + results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2) + + return results + + def decode_core(self, z, **kwargs): + if self.encoder_type == "2d" and z.dim() == 5 and not self.perframe_ae: + b, _, t, _, _ = z.shape + z = rearrange(z, 'b c t h w -> (b t) c h w') + reshape_back = True + else: + reshape_back = False + + if not self.perframe_ae: + z = 1. / self.scale_factor * z + results = self.first_stage_model.decode(z, **kwargs) + else: + results = [] + for index in range(z.shape[2]): + frame_z = 1. / self.scale_factor * z[:,:,index,:,:] + frame_result = self.first_stage_model.decode(frame_z, **kwargs) + results.append(frame_result) + results = torch.stack(results, dim=2) + + + if reshape_back: + results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t) + return results + + @torch.no_grad() + def decode_first_stage(self, z, **kwargs): + return self.decode_core(z, **kwargs) + + def apply_model(self, x_noisy, t, cond, **kwargs): + if isinstance(cond, dict): + # hybrid case, cond is exptected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' + cond = {key: cond} + + x_recon = self.model(x_noisy, t, **cond, **kwargs) + + if isinstance(x_recon, tuple): + return x_recon[0] + else: + return x_recon + + def _get_denoise_row_from_list(self, samples, desc=''): + denoise_row = [] + for zd in tqdm(samples, desc=desc): + denoise_row.append(self.decode_first_stage(zd.to(self.device))) + n_log_timesteps = len(denoise_row) + + denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W + + if denoise_row.dim() == 5: + # img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps] + denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps) + elif denoise_row.dim() == 6: + # video, grid_size=[n_log_timesteps*bs, t] + video_length = denoise_row.shape[3] + denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w') + denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w') + denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w') + denoise_grid = make_grid(denoise_grid, nrow=video_length) + else: + raise ValueError + + return denoise_grid + + + @torch.no_grad() + def decode_first_stage_2DAE(self, z, **kwargs): + + b, _, t, _, _ = z.shape + z = 1. / self.scale_factor * z + results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2) + + return results + + + def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs): + t_in = t + model_out = self.apply_model(x, t_in, c, **kwargs) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1., 1.) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + + if return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \ + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \ + score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs) + if return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + + if return_x0: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \ + timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs): + + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + # sample an initial noise + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + if start_T is not None: + timesteps = min(timesteps, start_T) + + iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps)) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != 'hybrid' + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1. - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: callback(i) + if img_callback: img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + +class LatentVisualDiffusion(LatentDiffusion): + def __init__(self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs): + super().__init__(*args, **kwargs) + self.random_cond = random_cond + self.instantiate_img_embedder(cond_img_config, freeze=True) + num_tokens = 16 if finegrained else 4 + self.image_proj_model = self.init_projector(use_finegrained=finegrained, num_tokens=num_tokens, input_dim=1024,\ + cross_attention_dim=1024, dim=1280) + + def instantiate_img_embedder(self, config, freeze=True): + embedder = instantiate_from_config(config) + if freeze: + self.embedder = embedder.eval() + self.embedder.train = disabled_train + for param in self.embedder.parameters(): + param.requires_grad = False + + def init_projector(self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim): + if not use_finegrained: + image_proj_model = ImageProjModel(clip_extra_context_tokens=num_tokens, cross_attention_dim=cross_attention_dim, + clip_embeddings_dim=input_dim + ) + else: + image_proj_model = Resampler(dim=input_dim, depth=4, dim_head=64, heads=12, num_queries=num_tokens, + embedding_dim=dim, output_dim=cross_attention_dim, ff_mult=4 + ) + return image_proj_model + + ## Never delete this func: it is used in log_images() and inference stage + def get_image_embeds(self, batch_imgs): + ## img: b c h w + img_token = self.embedder(batch_imgs) + img_emb = self.image_proj_model(img_token) + return img_emb + + +class DiffusionWrapper(pl.LightningModule): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + + def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, + c_adm=None, s=None, mask=None, **kwargs): + # temporal_context = fps is foNone + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == 'concat': + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t, **kwargs) + elif self.conditioning_key == 'crossattn': + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc, **kwargs) + elif self.conditioning_key == 'hybrid': + ## it is just right [b,c,t,h,w]: concatenate in channel dim + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif self.conditioning_key == 'resblockcond': + cc = c_crossattn[0] + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == 'adm': + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + elif self.conditioning_key == 'hybrid-adm': + assert c_adm is not None + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc, y=c_adm) + elif self.conditioning_key == 'hybrid-time': + assert s is not None + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc, s=s) + elif self.conditioning_key == 'concat-time-mask': + # assert s is not None + # mainlogger.info('x & mask:',x.shape,c_concat[0].shape) + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t, context=None, s=s, mask=mask) + elif self.conditioning_key == 'concat-adm-mask': + # assert s is not None + # mainlogger.info('x & mask:',x.shape,c_concat[0].shape) + if c_concat is not None: + xc = torch.cat([x] + c_concat, dim=1) + else: + xc = x + out = self.diffusion_model(xc, t, context=None, y=s, mask=mask) + elif self.conditioning_key == 'hybrid-adm-mask': + cc = torch.cat(c_crossattn, 1) + if c_concat is not None: + xc = torch.cat([x] + c_concat, dim=1) + else: + xc = x + out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask) + elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index + # assert s is not None + assert c_adm is not None + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm) + else: + raise NotImplementedError() + + return out \ No newline at end of file diff --git a/lvdm/models/ddpm3d_cond.py b/lvdm/models/ddpm3d_cond.py new file mode 100644 index 0000000000000000000000000000000000000000..987c1f2861041ac8c69cb21209e258402c469ec5 --- /dev/null +++ b/lvdm/models/ddpm3d_cond.py @@ -0,0 +1,141 @@ +import os, random +from einops import rearrange, repeat + +import torch +from utils.utils import instantiate_from_config +from lvdm.models.ddpm3d import LatentDiffusion +from lvdm.models.samplers.ddim import DDIMSampler +from lvdm.modules.attention import TemporalTransformer + +class T2VAdapterDepth(LatentDiffusion): + def __init__(self, depth_stage_config, adapter_config, *args, **kwargs): + super().__init__(*args, **kwargs) + self.depth_stage = instantiate_from_config(depth_stage_config) + self.adapter = instantiate_from_config(adapter_config) + self.condtype = adapter_config.cond_name + + if 'pretrained' in adapter_config: + self.load_pretrained_adapter(adapter_config.pretrained) + + for param in self.depth_stage.parameters(): + param.requires_grad = False + + def prepare_midas_input(self, x): + # x: (b, c, h, w) + h, w = x.shape[-2:] + x_midas = torch.nn.functional.interpolate(x, size=(h, w), mode='bilinear') + return x_midas + + @torch.no_grad() + def get_batch_depth(self, x, target_size): + # x: (b, c, t, h, w) + # get depth image, reshape to target_size and normalize to [-1, 1] + b, c, t, h, w = x.shape + x = rearrange(x, 'b c t h w -> (b t) c h w') + x_midas = self.prepare_midas_input(x) + cond_depth = self.depth_stage(x_midas) + cond_depth = torch.nn.functional.interpolate(cond_depth, size=target_size, mode='bilinear') + depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True) + cond_depth = (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) + cond_depth = 2. * cond_depth - 1. + cond_depth = rearrange(cond_depth, '(b t) c h w -> b c t h w', b=b, t=t) + return cond_depth + + def load_pretrained_adapter(self, adapter_ckpt): + # load pretrained adapter + print(">>> Load pretrained adapter checkpoint.") + try: + state_dict = torch.load(adapter_ckpt, map_location="cpu") + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + self.adapter.load_state_dict(state_dict, strict=True) + except: + state_dict = torch.load(adapter_ckpt, map_location=f"cpu") + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + model_state_dict = self.adapter.state_dict() + n_unmatched = 0 + for n, p in model_state_dict.items(): + if p.shape != state_dict[n].shape: + state_dict.pop(n) + n_unmatched += 1 + model_state_dict.update(state_dict) + self.adapter.load_state_dict(model_state_dict) + print(f"Pretrained adapter IS NOT complete [{n_unmatched} units have unmatched shape].") + + +class T2IAdapterStyleAS(LatentDiffusion): + def __init__(self, style_stage_config, adapter_config, *args, **kwargs): + super(T2IAdapterStyleAS, self).__init__(*args, **kwargs) + self.adapter = instantiate_from_config(adapter_config) + self.condtype = adapter_config.cond_name + ## adapter loading / saving paths + self.style_stage_model = instantiate_from_config(style_stage_config) + + self.adapter.create_cross_attention_adapter(self.model.diffusion_model) + + if 'pretrained' in adapter_config: + self.load_pretrained_adapter(adapter_config.pretrained) + + # freeze the style stage model + for param in self.style_stage_model.parameters(): + param.requires_grad = False + + def load_pretrained_adapter(self, pretrained): + state_dict = torch.load(pretrained, map_location=f"cpu") + + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + self.adapter.load_state_dict(state_dict, strict=False) + print('>>> adapter checkpoint loaded.') + + @torch.no_grad() + def get_batch_style(self, batch_x): + b, c, h, w = batch_x.shape + cond_style = self.style_stage_model(batch_x) + return cond_style + +class T2VFintoneStyleAS(T2IAdapterStyleAS): + def _get_temp_attn_parameters(self): + temp_attn_params = [] + def register_recr(net_, name): + if isinstance(net_, TemporalTransformer): + temp_attn_params.extend(net_.parameters()) + else: + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + for name, net in self.model.diffusion_model.named_children(): + register_recr(net, name) + return temp_attn_params + + def _get_temp_attn_state_dict(self): + temp_attn_state_dict = {} + def register_recr(net_, name): + if isinstance(net_, TemporalTransformer): + temp_attn_state_dict[name] = net_.state_dict() + else: + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + for name, net in self.model.diffusion_model.named_children(): + register_recr(net, name) + return temp_attn_state_dict + + def _load_temp_attn_state_dict(self, temp_attn_state_dict): + def register_recr(net_, name): + if isinstance(net_, TemporalTransformer): + net_.load_state_dict(temp_attn_state_dict[name], strict=True) + else: + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + for name, net in self.model.diffusion_model.named_children(): + register_recr(net, name) + + def load_pretrained_temporal(self, pretrained): + temp_attn_ckpt = torch.load(pretrained, map_location=f"cpu") + if "state_dict" in list(temp_attn_ckpt.keys()): + temp_attn_ckpt = temp_attn_ckpt["state_dict"] + self._load_temp_attn_state_dict(temp_attn_ckpt) + print('>>> Temporal Attention checkpoint loaded.') \ No newline at end of file diff --git a/lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc b/lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ee19b52c772f632758874e7c5dfb9412d7d2211 Binary files /dev/null and b/lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc differ diff --git a/lvdm/models/samplers/ddim.py b/lvdm/models/samplers/ddim.py new file mode 100644 index 0000000000000000000000000000000000000000..8f336d17d679a2808d2767415c4e705f87f10298 --- /dev/null +++ b/lvdm/models/samplers/ddim.py @@ -0,0 +1,420 @@ +import numpy as np +from tqdm import tqdm +import torch +from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps +from lvdm.common import noise_like + + +class DDIMSampler(object): + def __init__(self, model, schedule="linear", **kwargs): + super().__init__() + self.model = model + self.ddpm_num_timesteps = model.num_timesteps + self.schedule = schedule + self.counter = 0 + + def register_buffer(self, name, attr): + if type(attr) == torch.Tensor: + if attr.device != torch.device("cuda"): + attr = attr.to(torch.device("cuda")) + setattr(self, name, attr) + + def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): + self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, + num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) + alphas_cumprod = self.model.alphas_cumprod + assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' + to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) + + self.register_buffer('betas', to_torch(self.model.betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) + self.use_scale = self.model.use_scale + + if self.use_scale: + self.register_buffer('scale_arr', to_torch(self.model.scale_arr)) + ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps] + self.register_buffer('ddim_scale_arr', ddim_scale_arr) + ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist()) + self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) + + # ddim sampling parameters + ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), + ddim_timesteps=self.ddim_timesteps, + eta=ddim_eta,verbose=verbose) + self.register_buffer('ddim_sigmas', ddim_sigmas) + self.register_buffer('ddim_alphas', ddim_alphas) + self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) + self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) + sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( + (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( + 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) + self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) + + @torch.no_grad() + def sample(self, + S, + batch_size, + shape, + conditioning=None, + callback=None, + normals_sequence=None, + img_callback=None, + quantize_x0=False, + eta=0., + mask=None, + x0=None, + temperature=1., + noise_dropout=0., + score_corrector=None, + corrector_kwargs=None, + verbose=True, + schedule_verbose=False, + x_T=None, + log_every_t=100, + unconditional_guidance_scale=1., + unconditional_conditioning=None, + # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... + **kwargs + ): + + # check condition bs + if conditioning is not None: + if isinstance(conditioning, dict): + try: + cbs = conditioning[list(conditioning.keys())[0]].shape[0] + except: + cbs = conditioning[list(conditioning.keys())[0]][0].shape[0] + + if cbs != batch_size: + print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") + else: + if conditioning.shape[0] != batch_size: + print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") + + self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose) + + # make shape + if len(shape) == 3: + C, H, W = shape + size = (batch_size, C, H, W) + elif len(shape) == 4: + C, T, H, W = shape + size = (batch_size, C, T, H, W) + # print(f'Data shape for DDIM sampling is {size}, eta {eta}') + + samples, intermediates = self.ddim_sampling(conditioning, size, + callback=callback, + img_callback=img_callback, + quantize_denoised=quantize_x0, + mask=mask, x0=x0, + ddim_use_original_steps=False, + noise_dropout=noise_dropout, + temperature=temperature, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + x_T=x_T, + log_every_t=log_every_t, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + verbose=verbose, + **kwargs) + return samples, intermediates + + @torch.no_grad() + def ddim_sampling(self, cond, shape, + x_T=None, ddim_use_original_steps=False, + callback=None, timesteps=None, quantize_denoised=False, + mask=None, x0=None, img_callback=None, log_every_t=100, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True, + cond_tau=1., target_size=None, start_timesteps=None, + **kwargs): + device = self.model.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + if timesteps is None: + timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps + elif timesteps is not None and not ddim_use_original_steps: + subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 + timesteps = self.ddim_timesteps[:subset_end] + + intermediates = {'x_inter': [img], 'pred_x0': [img]} + time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) + total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] + if verbose: + iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) + else: + iterator = time_range + + init_x0 = False + clean_cond = kwargs.pop("clean_cond", False) + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((b,), step, device=device, dtype=torch.long) + if start_timesteps is not None: + assert x0 is not None + if step > start_timesteps*time_range[0]: + continue + elif not init_x0: + img = self.model.q_sample(x0, ts) + init_x0 = True + + # use mask to blend noised original latent (img_orig) & new sampled latent (img) + if mask is not None: + assert x0 is not None + if clean_cond: + img_orig = x0 + else: + img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? + img = img_orig * mask + (1. - mask) * img # keep original & modify use img + + index_clip = int((1 - cond_tau) * total_steps) + if index <= index_clip and target_size is not None: + target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8] + img = torch.nn.functional.interpolate( + img, + size=target_size_, + mode="nearest", + ) + outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, + quantize_denoised=quantize_denoised, temperature=temperature, + noise_dropout=noise_dropout, score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning, + x0=x0, + **kwargs) + + img, pred_x0 = outs + if callback: callback(i) + if img_callback: img_callback(pred_x0, i) + + if index % log_every_t == 0 or index == total_steps - 1: + intermediates['x_inter'].append(img) + intermediates['pred_x0'].append(pred_x0) + + return img, intermediates + + @torch.no_grad() + def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_conditioning=None, + uc_type=None, conditional_guidance_scale_temporal=None, **kwargs): + b, *_, device = *x.shape, x.device + if x.dim() == 5: + is_video = True + else: + is_video = False + + uncond_kwargs = kwargs.copy() + uncond_kwargs['append_to_context'] = None + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.: + e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser + else: + # with unconditional condition + if isinstance(c, torch.Tensor): + e_t = self.model.apply_model(x, t, c, **kwargs) + e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs) + elif isinstance(c, dict): + e_t = self.model.apply_model(x, t, c, **kwargs) + e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs) + else: + raise NotImplementedError + # text cfg + if uc_type is None: + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + else: + if uc_type == 'cfg_original': + e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond) + elif uc_type == 'cfg_ours': + e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t) + else: + raise NotImplementedError + # temporal guidance + if conditional_guidance_scale_temporal is not None: + e_t_temporal = self.model.apply_model(x, t, c, **kwargs) + e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs) + e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev + sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas + sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas + # select parameters corresponding to the currently considered timestep + + if is_video: + size = (b, 1, 1, 1, 1) + else: + size = (b, 1, 1, 1) + a_t = torch.full(size, alphas[index], device=device) + a_prev = torch.full(size, alphas_prev[index], device=device) + sigma_t = torch.full(size, sigmas[index], device=device) + sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + # direction pointing to x_t + dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t + + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + if self.use_scale: + scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr + scale_t = torch.full(size, scale_arr[index], device=device) + scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev + scale_t_prev = torch.full(size, scale_arr_prev[index], device=device) + pred_x0 /= scale_t + x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise + else: + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + + return x_prev, pred_x0 + + + @torch.no_grad() + def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): + # fast, but does not allow for exact reconstruction + # t serves as an index to gather the correct alphas + if use_original_steps: + sqrt_alphas_cumprod = self.sqrt_alphas_cumprod + sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod + else: + sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) + sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas + + if noise is None: + noise = torch.randn_like(x0) + + def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + + extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) + + @torch.no_grad() + def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, + use_original_steps=False): + + timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps + timesteps = timesteps[:t_start] + + time_range = np.flip(timesteps) + total_steps = timesteps.shape[0] + print(f"Running DDIM Sampling with {total_steps} timesteps") + + iterator = tqdm(time_range, desc='Decoding image', total=total_steps) + x_dec = x_latent + for i, step in enumerate(iterator): + index = total_steps - i - 1 + ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) + x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_conditioning=unconditional_conditioning) + return x_dec + + +class DDIMStyleSampler(DDIMSampler): + @torch.no_grad() + def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, + unconditional_guidance_scale=1., unconditional_guidance_scale_style=None, unconditional_conditioning=None, + uc_type=None, conditional_guidance_scale_temporal=None, **kwargs): + b, *_, device = *x.shape, x.device + if x.dim() == 5: + is_video = True + else: + is_video = False + uncond_kwargs = kwargs.copy() + uncond_kwargs['append_to_context'] = None + + if unconditional_conditioning is None or unconditional_guidance_scale == 1.: + e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser + else: + # with unconditional condition + if isinstance(c, torch.Tensor): + e_t = self.model.apply_model(x, t, c, **kwargs) + e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs) + if unconditional_guidance_scale_style is not None: + e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs) + elif isinstance(c, dict): + e_t = self.model.apply_model(x, t, c, **kwargs) + e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs) + if unconditional_guidance_scale_style is not None: + e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs) + else: + raise NotImplementedError + + if unconditional_guidance_scale_style is None: + e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) + else: + e_t = e_t + unconditional_guidance_scale_style * (e_t - e_t_uncond_style) + \ + unconditional_guidance_scale * (e_t_uncond_style - e_t_uncond) + + # temporal guidance + if conditional_guidance_scale_temporal is not None: + e_t_temporal = self.model.apply_model(x, t, c, **kwargs) + e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs) + e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image) + + if score_corrector is not None: + assert self.model.parameterization == "eps" + e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) + + alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas + alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev + sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas + sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas + # select parameters corresponding to the currently considered timestep + + if is_video: + size = (b, 1, 1, 1, 1) + else: + size = (b, 1, 1, 1) + a_t = torch.full(size, alphas[index], device=device) + a_prev = torch.full(size, alphas_prev[index], device=device) + sigma_t = torch.full(size, sigmas[index], device=device) + sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device) + + # current prediction for x_0 + pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() + # print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f) + if quantize_denoised: + pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) + # direction pointing to x_t + dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t + # # norm pred_x0 + # p=2 + # s=() + # pred_x0 = pred_x0 - torch.max(torch.abs(pred_x0)) + + noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + + x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise + + return x_prev, pred_x0 \ No newline at end of file diff --git a/lvdm/models/utils_diffusion.py b/lvdm/models/utils_diffusion.py new file mode 100644 index 0000000000000000000000000000000000000000..603fa817b07cea3581a70ff225d479b7d1518463 --- /dev/null +++ b/lvdm/models/utils_diffusion.py @@ -0,0 +1,104 @@ +import math +import numpy as np +from einops import repeat +import torch +import torch.nn.functional as F + + +def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): + """ + Create sinusoidal timestep embeddings. + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an [N x dim] Tensor of positional embeddings. + """ + if not repeat_only: + half = dim // 2 + freqs = torch.exp( + -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half + ).to(device=timesteps.device) + args = timesteps[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + else: + embedding = repeat(timesteps, 'b -> b d', d=dim) + return embedding + + +def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if schedule == "linear": + betas = ( + torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 + ) + + elif schedule == "cosine": + timesteps = ( + torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s + ) + alphas = timesteps / (1 + cosine_s) * np.pi / 2 + alphas = torch.cos(alphas).pow(2) + alphas = alphas / alphas[0] + betas = 1 - alphas[1:] / alphas[:-1] + betas = np.clip(betas, a_min=0, a_max=0.999) + + elif schedule == "sqrt_linear": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) + elif schedule == "sqrt": + betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 + else: + raise ValueError(f"schedule '{schedule}' unknown.") + return betas.numpy() + + +def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): + if ddim_discr_method == 'uniform': + c = num_ddpm_timesteps // num_ddim_timesteps + ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) + elif ddim_discr_method == 'quad': + ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) + else: + raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') + + # assert ddim_timesteps.shape[0] == num_ddim_timesteps + # add one to get the final alpha values right (the ones from first scale to data during sampling) + steps_out = ddim_timesteps + 1 + if verbose: + print(f'Selected timesteps for ddim sampler: {steps_out}') + return steps_out + + +def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): + # select alphas for computing the variance schedule + # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}') + alphas = alphacums[ddim_timesteps] + alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) + + # according the the formula provided in https://arxiv.org/abs/2010.02502 + sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) + if verbose: + print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') + print(f'For the chosen value of eta, which is {eta}, ' + f'this results in the following sigma_t schedule for ddim sampler {sigmas}') + return sigmas, alphas, alphas_prev + + +def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): + """ + Create a beta schedule that discretizes the given alpha_t_bar function, + which defines the cumulative product of (1-beta) over time from t = [0,1]. + :param num_diffusion_timesteps: the number of betas to produce. + :param alpha_bar: a lambda that takes an argument t from 0 to 1 and + produces the cumulative product of (1-beta) up to that + part of the diffusion process. + :param max_beta: the maximum beta to use; use values lower than 1 to + prevent singularities. + """ + betas = [] + for i in range(num_diffusion_timesteps): + t1 = i / num_diffusion_timesteps + t2 = (i + 1) / num_diffusion_timesteps + betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) + return np.array(betas) \ No newline at end of file diff --git a/lvdm/modules/__pycache__/attention.cpython-39.pyc b/lvdm/modules/__pycache__/attention.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2a4af398b1a7f61e526e5eec89629b51cff7166 Binary files /dev/null and b/lvdm/modules/__pycache__/attention.cpython-39.pyc differ diff --git a/lvdm/modules/attention.py b/lvdm/modules/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..1a63a06189255fa6e3693bb60448a2d29dec26f9 --- /dev/null +++ b/lvdm/modules/attention.py @@ -0,0 +1,851 @@ +from functools import partial +import torch +from torch import nn, einsum +import torch.nn.functional as F +from einops import rearrange, repeat +try: + import xformers + import xformers.ops + XFORMERS_IS_AVAILBLE = True +except: + XFORMERS_IS_AVAILBLE = False +from lvdm.common import ( + checkpoint, + exists, + default, +) +from lvdm.basics import ( + zero_module, +) + +class RelativePosition(nn.Module): + """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """ + + def __init__(self, num_units, max_relative_position): + super().__init__() + self.num_units = num_units + self.max_relative_position = max_relative_position + self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units)) + nn.init.xavier_uniform_(self.embeddings_table) + + def forward(self, length_q, length_k): + device = self.embeddings_table.device + range_vec_q = torch.arange(length_q, device=device) + range_vec_k = torch.arange(length_k, device=device) + distance_mat = range_vec_k[None, :] - range_vec_q[:, None] + distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) + final_mat = distance_mat_clipped + self.max_relative_position + final_mat = final_mat.long() + embeddings = self.embeddings_table[final_mat] + return embeddings + + +class CrossAttention(nn.Module): + + def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., + relative_position=False, temporal_length=None, img_cross_attention=False): + super().__init__() + inner_dim = dim_head * heads + context_dim = default(context_dim, query_dim) + + self.scale = dim_head**-0.5 + self.heads = heads + self.dim_head = dim_head + self.to_q = nn.Linear(query_dim, inner_dim, bias=False) + self.to_k = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v = nn.Linear(context_dim, inner_dim, bias=False) + self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) + + self.image_cross_attention_scale = 1.0 + self.text_context_len = 77 + self.img_cross_attention = img_cross_attention + if self.img_cross_attention: + self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) + + self.relative_position = relative_position + if self.relative_position: + assert(temporal_length is not None) + self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) + self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) + else: + ## only used for spatial attention, while NOT for temporal attention + if XFORMERS_IS_AVAILBLE and temporal_length is None: + self.forward = self.efficient_forward + + def forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + ## considering image token additionally + if context is not None and self.img_cross_attention: + context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] + k = self.to_k(context) + v = self.to_v(context) + k_ip = self.to_k_ip(context_img) + v_ip = self.to_v_ip(context_img) + else: + k = self.to_k(context) + v = self.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale + if self.relative_position and not is_imgbatch: + len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] + k2 = self.relative_position_k(len_q, len_k) + sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check + sim += sim2 + del k + + if exists(mask): + ## feasible for causal attention mask only + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b i j -> (b h) i j', h=h) + sim.masked_fill_(~(mask>0.5), max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + out = torch.einsum('b i j, b j d -> b i d', sim, v) + if self.relative_position and not is_imgbatch: + v2 = self.relative_position_v(len_q, len_v) + out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check + out += out2 + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + + ## considering image token additionally + if context is not None and self.img_cross_attention: + k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip)) + sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale + del k_ip + sim_ip = sim_ip.softmax(dim=-1) + out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip) + out_ip = rearrange(out, '(b h) n d -> b n (h d)', h=h) + out = out + self.image_cross_attention_scale * out_ip + del q + + return self.to_out(out) + + def efficient_forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs): + q = self.to_q(x) + context = default(context, x) + + ## considering image token additionally + if context is not None and self.img_cross_attention: + context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:] + k = self.to_k(context) + v = self.to_v(context) + k_ip = self.to_k_ip(context_img) + v_ip = self.to_v_ip(context_img) + else: + k = self.to_k(context) + v = self.to_v(context) + + b, _, _ = q.shape + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (q, k, v), + ) + # actually compute the attention, what we cannot get enough of + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) + + ## considering image token additionally + if context is not None and self.img_cross_attention: + k_ip, v_ip = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], self.heads, self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * self.heads, t.shape[1], self.dim_head) + .contiguous(), + (k_ip, v_ip), + ) + out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None) + out_ip = ( + out_ip.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, self.heads, out.shape[1], self.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], self.heads * self.dim_head) + ) + if context is not None and self.img_cross_attention: + out = out + self.image_cross_attention_scale * out_ip + return self.to_out(out) + + +class BasicTransformerBlock(nn.Module): + + def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, + disable_self_attn=False, attention_cls=None, img_cross_attention=False): + super().__init__() + attn_cls = CrossAttention if attention_cls is None else attention_cls + self.disable_self_attn = disable_self_attn + self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, + context_dim=context_dim if self.disable_self_attn else None) + self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) + self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, + img_cross_attention=img_cross_attention) + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + self.norm3 = nn.LayerNorm(dim) + self.checkpoint = checkpoint + + def forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False): + ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments + input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments + if context is not None: + input_tuple = (x, context, None, emb, scale_scalar, is_imgbatch) + if mask is not None: + forward_mask = partial(self._forward, mask=mask, is_imgbatch=is_imgbatch) + return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint) + if context is not None and mask is not None: + input_tuple = (x, context, mask, emb, scale_scalar, is_imgbatch) + return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint) + + def _forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False): + x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x + x = self.attn2(self.norm2(x), context=context, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x + x = self.ff(self.norm3(x)) + x + return x + + +class SpatialTransformer(nn.Module): + """ + Transformer block for image-like data in spatial axis. + First, project the input (aka embedding) + and reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + NEW: use_linear for more efficiency instead of the 1x1 convs + """ + + def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, + use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False): + super().__init__() + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + if not use_linear: + self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + self.transformer_blocks = nn.ModuleList([ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim, + img_cross_attention=img_cross_attention, + disable_self_attn=disable_self_attn, + checkpoint=use_checkpoint) for d in range(depth) + ]) + if not use_linear: + self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) + else: + self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) + self.use_linear = use_linear + + + def forward(self, x, context=None, emb=None, scale_scalar=None): + b, c, h, w = x.shape + x_in = x + x = self.norm(x) + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, 'b c h w -> b (h w) c').contiguous() + if self.use_linear: + x = self.proj_in(x) + for i, block in enumerate(self.transformer_blocks): + x = block(x, context=context, emb=emb, scale_scalar=scale_scalar) + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() + if not self.use_linear: + x = self.proj_out(x) + return x + x_in + + +class TemporalTransformer(nn.Module): + """ + Transformer block for image-like data in temporal axis. + First, reshape to b, t, d. + Then apply standard transformer action. + Finally, reshape to image + """ + def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, + use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, + relative_position=False, temporal_length=None): + super().__init__() + self.only_self_att = only_self_att + self.relative_position = relative_position + self.causal_attention = causal_attention + self.in_channels = in_channels + inner_dim = n_heads * d_head + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + if not use_linear: + self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) + else: + self.proj_in = nn.Linear(in_channels, inner_dim) + + if relative_position: + assert(temporal_length is not None) + attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length) + else: + attention_cls = None + if self.causal_attention: + assert(temporal_length is not None) + self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) + + if self.only_self_att: + context_dim = None + self.transformer_blocks = nn.ModuleList([ + BasicTransformerBlock( + inner_dim, + n_heads, + d_head, + dropout=dropout, + context_dim=context_dim, + attention_cls=attention_cls, + checkpoint=use_checkpoint) for d in range(depth) + ]) + if not use_linear: + self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) + else: + self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) + self.use_linear = use_linear + + def forward(self, x, context=None, is_imgbatch=False, emb=None): + b, c, t, h, w = x.shape + x_in = x + x = self.norm(x) + x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous() + if not self.use_linear: + x = self.proj_in(x) + x = rearrange(x, 'bhw c t -> bhw t c').contiguous() + if self.use_linear: + x = self.proj_in(x) + + if is_imgbatch: + maks = torch.eye(t).unsqueeze(0) + maks = maks.to(x.device) + maks = repeat(maks, 'l i j -> (l bhw) i j', bhw=b*h*w) + elif self.causal_attention: + mask = self.mask.to(x.device) + mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w) + else: + mask = None + + if self.only_self_att: + ## note: if no context is given, cross-attention defaults to self-attention + for i, block in enumerate(self.transformer_blocks): + x = block(x, mask=mask) + x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() + else: + x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous() + context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous() + for i, block in enumerate(self.transformer_blocks): + # calculate each batch one by one (since number in shape could not greater then 65,535 for some package) + for j in range(b): + context_j = repeat( + context[j], + 't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous() + ## note: causal mask will not applied in cross-attention case + x[j] = block(x[j], context=context_j, is_imgbatch=is_imgbatch) + + if self.use_linear: + x = self.proj_out(x) + x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous() + if not self.use_linear: + x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous() + x = self.proj_out(x) + x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous() + + return x + x_in + + +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +class LinearAttention(nn.Module): + def __init__(self, dim, heads=4, dim_head=32): + super().__init__() + self.heads = heads + hidden_dim = dim_head * heads + self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) + self.to_out = nn.Conv2d(hidden_dim, dim, 1) + + def forward(self, x): + b, c, h, w = x.shape + qkv = self.to_qkv(x) + q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) + k = k.softmax(dim=-1) + context = torch.einsum('bhdn,bhen->bhde', k, v) + out = torch.einsum('bhde,bhdn->bhen', context, q) + out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) + return self.to_out(out) + + +class SpatialSelfAttention(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = rearrange(q, 'b c h w -> b (h w) c') + k = rearrange(k, 'b c h w -> b c (h w)') + w_ = torch.einsum('bij,bjk->bik', q, k) + + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = rearrange(v, 'b c h w -> b c (h w)') + w_ = rearrange(w_, 'b i j -> b j i') + h_ = torch.einsum('bij,bjk->bik', v, w_) + h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) + h_ = self.proj_out(h_) + + return x+h_ + + +class CrossAttentionProcessor(nn.Module): + def forward(self, attn, x, context=None, mask=None, is_imgbatch=False): + h = attn.heads + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale + if attn.relative_position and not is_imgbatch: + len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] + k2 = attn.relative_position_k(len_q, len_k) + sim2 = einsum('b t d, t s d -> b t s', q, k2) * attn.scale # TODO check + sim += sim2 + del q, k + + if exists(mask): + raise NotImplementedError + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', sim, v) + if attn.relative_position and not is_imgbatch: + v2 = attn.relative_position_v(len_q, len_v) + out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check + out += out2 + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return attn.to_out(out) + + def efficient_forward(self, attn, x, context=None, mask=None, **kwargs): + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + b, _, _ = q.shape + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], attn.heads, attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * attn.heads, t.shape[1], attn.dim_head) + .contiguous(), + (q, k, v), + ) + # actually compute the attention, what we cannot get enough of + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) + + if exists(mask): + raise NotImplementedError + out = ( + out.unsqueeze(0) + .reshape(b, attn.heads, out.shape[1], attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], attn.heads * attn.dim_head) + ) + return attn.to_out(out) + + def __call__(self, **kwargs): + if XFORMERS_IS_AVAILBLE: + return self.efficient_forward(**kwargs) + else: + return self.forward(**kwargs) + + +def register_attn_processor(unet): + Attn_processor = {} + def attn_forward(self): + assert hasattr(self, "processor") + def forward(x, context=None, mask=None, **kwargs): + return self.processor(self, x, context, mask, **kwargs) + + return forward + + def register_recr_in_block(net_, name): + """ + find and register cross attention in the SpatialTransformer block + assert only one cross attention in each block + """ + if net_.__class__.__name__ == 'BasicTransformerBlock': + processor_name = f"{name}.attn2.processor" + net_.attn2.processor = CrossAttentionProcessor() + net_.attn2.forward = attn_forward(net_.attn2) + Attn_processor.update({processor_name: net_.attn2.processor}) + print(f"Register Attention Processor in {processor_name} successfully!") + elif hasattr(net_, 'children'): + for sub_name, net in net_.named_children(): + register_recr_in_block(net, f"{name}.{sub_name}") + return + + def register_recr(net_, name): + # find SpatialTransformer block + if isinstance(net_, SpatialTransformer): + register_recr_in_block(net_, name) + elif hasattr(net_, 'children'): + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + + for name, net in unet.named_children(): + register_recr(net, name) + + print("==========================================") + print(f"Totally {len(Attn_processor.keys())} processors are registered successfully! hiahiahia") + + return Attn_processor + + +def set_attn_processor(unet, processor): + + def register_recr(net_, name): + if hasattr(net_, "processor"): + net_.processor = processor[f"{name}.processor"] + print(f"Set New Attention Processor in {name}.processor successfully!") + + else: + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + for name, net in unet.named_children(): + register_recr(net, name) + + return + + +def get_attn_processor(unet): + processor_dict = {} + def register_recr(net_, name): + if hasattr(net_, "processor"): + processor_dict[f"{name}.processor"] = net_.processor + + else: + for sub_name, net in net_.named_children(): + register_recr(net, f"{name}.{sub_name}") + + for name, net in unet.named_children(): + register_recr(net, name) + + return processor_dict + + +class DualCrossAttnProcessor(nn.Module): + def __init__(self, context_dim, inner_dim, scale=1.0, state_dict=None, use_norm=False, layer_idx=0): + super().__init__() + self.to_k_style = nn.Linear(context_dim, inner_dim, bias=False) + self.to_v_style = nn.Linear(context_dim, inner_dim, bias=False) + self.scale = scale + self.layer_idx = layer_idx + + if state_dict is not None: + self.to_k_style.load_state_dict(state_dict['k'], strict=True) + self.to_v_style.load_state_dict(state_dict['v'], strict=True) + + self.use_norm = use_norm + if use_norm: + self.norm_style = nn.LayerNorm(inner_dim) + else: + self.norm_style = lambda x: x + + def forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs): + h = attn.heads + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale + + if exists(mask): + ## feasible for causal attention mask only + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b i j -> (b h) i j', h=h) + sim.masked_fill_(~(mask>0.5), max_neg_value) + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', sim, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + + # for another cross attention + if context_style is not None: + k_style = self.to_k_style(context_style) + v_style = self.to_v_style(context_style) + + k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style)) + sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style) + sim_style = sim_style.softmax(dim=-1) + out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style) + out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h) + + out = out + out_style + + return attn.to_out(out) + + def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs): + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + b, _, _ = q.shape + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], attn.heads, attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * attn.heads, t.shape[1], attn.dim_head) + .contiguous(), + (q, k, v), + ) + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) + + out = ( + out.unsqueeze(0) + .reshape(b, attn.heads, out.shape[1], attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], attn.heads * attn.dim_head) + ) + + + if context_style is not None: + k_style = self.to_k_style(context_style) + v_style = self.to_v_style(context_style) + + k_style, v_style = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], attn.heads, attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * attn.heads, t.shape[1], attn.dim_head) + .contiguous(), + (k_style, v_style), + ) + out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None) + + out_style = ( + out_style.unsqueeze(0) + .reshape(b, attn.heads, out_style.shape[1], attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out_style.shape[1], attn.heads * attn.dim_head) + ) + + out = out + out_style + + return attn.to_out(out) + + def __call__(self, attn, x, context=None, mask=None, **kwargs): + # print("Hello! I am working!") + + # separate the context + # print(context.shape) + if context.shape[1] == 77: + context_style = None + else: + context_style = context[:, 77:, :] + context = context[:, :77, :] + + if XFORMERS_IS_AVAILBLE: + return self.efficient_forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs) + else: + return self.forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs) + + + +class DualCrossAttnProcessorAS(DualCrossAttnProcessor): + def forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs): + h = attn.heads + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale + + # attention, what we cannot get enough of + sim = sim.softmax(dim=-1) + + out = torch.einsum('b i j, b j d -> b i d', sim, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + + # for another cross attention + if context_style is not None: + k_style = self.to_k_style(context_style) + v_style = self.to_v_style(context_style) + + k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style)) + sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style) + sim_style = sim_style.softmax(dim=-1) + out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style) + out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h) + + if scale_scalar is not None: + scale = 1 + scale_scalar[:, self.layer_idx] + scale = scale[:, None] + else: + scale = 1.0 + + if self.use_norm: + out_style = self.norm_style(out_style) + + out = out + scale * out_style * self.scale + + return attn.to_out(out) + + def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs): + q = attn.to_q(x) + context = default(context, x) + k = attn.to_k(context) + v = attn.to_v(context) + + b, _, _ = q.shape + + q, k, v = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], attn.heads, attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * attn.heads, t.shape[1], attn.dim_head) + .contiguous(), + (q, k, v), + ) + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) + + out = ( + out.unsqueeze(0) + .reshape(b, attn.heads, out.shape[1], attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out.shape[1], attn.heads * attn.dim_head) + ) + + if context_style is not None: + k_style = self.to_k_style(context_style) + v_style = self.to_v_style(context_style) + + k_style, v_style = map( + lambda t: t.unsqueeze(3) + .reshape(b, t.shape[1], attn.heads, attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b * attn.heads, t.shape[1], attn.dim_head) + .contiguous(), + (k_style, v_style), + ) + out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None) + + out_style = ( + out_style.unsqueeze(0) + .reshape(b, attn.heads, out_style.shape[1], attn.dim_head) + .permute(0, 2, 1, 3) + .reshape(b, out_style.shape[1], attn.heads * attn.dim_head) + ) + + if scale_scalar is not None: + scale = 1 + scale_scalar[:, self.layer_idx] + scale = scale[:, None] + else: + scale = 1.0 + + + if self.use_norm: + out_style = self.norm_style(out_style) + + out = out + scale * out_style * self.scale + + return attn.to_out(out) + + + \ No newline at end of file diff --git a/lvdm/modules/encoders/__pycache__/adapter.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/adapter.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c74c66a6e0ba49b33366a219c994837d555ace8b Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/adapter.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/__pycache__/arch_transformer.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/arch_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c3363f8e92581cf0bfca9f3c035c0d35b37c3a8 Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/arch_transformer.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..821e12905a9b5a5842f664e90656ecb5214ddd2a Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/__pycache__/condition2.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/condition2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f8b56b7c3babf80a29f17b97ff72aa9edd7a80d0 Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/condition2.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/__pycache__/ip_resampler.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/ip_resampler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..251c460d1f789ed1e49e910feed65c7e34dd138c Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/ip_resampler.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/__pycache__/transformers.cpython-39.pyc b/lvdm/modules/encoders/__pycache__/transformers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d9c9135826d2b5562a843d456ac4d1836f43aeb9 Binary files /dev/null and b/lvdm/modules/encoders/__pycache__/transformers.cpython-39.pyc differ diff --git a/lvdm/modules/encoders/adapter.py b/lvdm/modules/encoders/adapter.py new file mode 100644 index 0000000000000000000000000000000000000000..fb793073bf55ad29a5f673f91cce4323c8560ec9 --- /dev/null +++ b/lvdm/modules/encoders/adapter.py @@ -0,0 +1,190 @@ +import torch +import torch.nn as nn +from collections import OrderedDict +from lvdm.basics import ( + zero_module, + conv_nd, + avg_pool_nd +) +from einops import rearrange +from lvdm.modules.attention import register_attn_processor, set_attn_processor, DualCrossAttnProcessor, get_attn_processor +from lvdm.modules.attention import DualCrossAttnProcessorAS +from utils.utils import instantiate_from_config + +from lvdm.modules.encoders.arch_transformer import Transformer + + +class StyleTransformer(nn.Module): + def __init__(self, in_dim=1024, out_dim=1024, num_heads=8, num_tokens=4, n_layers=2): + super().__init__() + scale = in_dim ** -0.5 + self.num_tokens = num_tokens + self.style_emb = nn.Parameter(torch.randn(1, num_tokens, in_dim) * scale) + self.transformer_blocks = Transformer( + width=in_dim, + layers=n_layers, + heads=num_heads, + ) + self.ln1 = nn.LayerNorm(in_dim) + self.ln2 = nn.LayerNorm(in_dim) + self.proj = nn.Parameter(torch.randn(in_dim, out_dim) * scale) + + def forward(self, x): + style_emb = self.style_emb.repeat(x.shape[0], 1, 1) + x = torch.cat([style_emb, x], dim=1) + # x = torch.cat([x, style_emb], dim=1) + x = self.ln1(x) + + x = x.permute(1, 0, 2) + x = self.transformer_blocks(x) + x = x.permute(1, 0, 2) + + x = self.ln2(x[:, :self.num_tokens, :]) + x = x @ self.proj + return x + + +class ScaleEncoder(nn.Module): + def __init__(self, in_dim=1024, out_dim=1, num_heads=8, num_tokens=16, n_layers=2): + super().__init__() + scale = in_dim ** -0.5 + self.num_tokens = num_tokens + self.scale_emb = nn.Parameter(torch.randn(1, num_tokens, in_dim) * scale) + self.transformer_blocks = Transformer( + width=in_dim, + layers=n_layers, + heads=num_heads, + ) + self.ln1 = nn.LayerNorm(in_dim) + self.ln2 = nn.LayerNorm(in_dim) + + self.out = nn.Sequential( + nn.Linear(in_dim, 32), + nn.GELU(), + nn.Linear(32, out_dim), + nn.Tanh(), + ) + + def forward(self, x): + scale_emb = self.scale_emb.repeat(x.shape[0], 1, 1) + x = torch.cat([scale_emb, x], dim=1) + x = self.ln1(x) + + x = x.permute(1, 0, 2) + x = self.transformer_blocks(x) + x = x.permute(1, 0, 2) + + x = self.ln2(x[:, :self.num_tokens, :]) + x = self.out(x) + return x + + +class DropPath(nn.Module): + r"""DropPath but without rescaling and supports optional all-zero and/or all-keep. + """ + def __init__(self, p): + super(DropPath, self).__init__() + self.p = p + + def forward(self, *args, zero=None, keep=None): + if not self.training: + return args[0] if len(args) == 1 else args + + # params + x = args[0] + b = x.size(0) + n = (torch.rand(b) < self.p).sum() + + # non-zero and non-keep mask + mask = x.new_ones(b, dtype=torch.bool) + if keep is not None: + mask[keep] = False + if zero is not None: + mask[zero] = False + + # drop-path index + index = torch.where(mask)[0] + index = index[torch.randperm(len(index))[:n]] + if zero is not None: + index = torch.cat([index, torch.where(zero)[0]], dim=0) + + # drop-path multiplier + multiplier = x.new_ones(b) + multiplier[index] = 0.0 + output = tuple(u * self.broadcast(multiplier, u) for u in args) + return output[0] if len(args) == 1 else output + + def broadcast(self, src, dst): + assert src.size(0) == dst.size(0) + shape = (dst.size(0), ) + (1, ) * (dst.ndim - 1) + return src.view(shape) + + +class ImageContext(nn.Module): + def __init__(self, width=1024, context_dim=768, token_num=1): + super().__init__() + self.width = width + self.token_num = token_num + self.context_dim = context_dim + + self.fc = nn.Sequential( + nn.Linear(context_dim, width), + nn.SiLU(), + nn.Linear(width, token_num * context_dim), + ) + self.drop_path = DropPath(0.5) + + def forward(self, x): + # x shape [B, C] + out = self.drop_path(self.fc(x)) + out = rearrange(out, 'b (n c) -> b n c', n=self.token_num) + return out + + +class StyleAdapterDualAttnAS(nn.Module): + def __init__(self, image_context_config, scale_predictor_config, scale=1.0, use_norm=False, time_embed_dim=1024, mid_dim=32): + super().__init__() + self.image_context_model = instantiate_from_config(image_context_config) + self.scale_predictor = instantiate_from_config(scale_predictor_config) + self.scale = scale + self.use_norm = use_norm + self.time_embed_dim = time_embed_dim + self.mid_dim = mid_dim + + def create_cross_attention_adapter(self, unet): + ori_processor = register_attn_processor(unet) + dual_attn_processor = {} + for idx, key in enumerate(ori_processor.keys()): + kv_state_dicts = { + 'k': {'weight': unet.state_dict()[key[:-10] + '.to_k.weight']}, + 'v': {'weight': unet.state_dict()[key[:-10] + '.to_v.weight']}, + } + context_dim = kv_state_dicts['k']['weight'].shape[1] + inner_dim = kv_state_dicts['k']['weight'].shape[0] + print(key, context_dim, inner_dim) + + dual_attn_processor[key] = DualCrossAttnProcessorAS( + context_dim=context_dim, + inner_dim=inner_dim, + state_dict=kv_state_dicts, + scale=self.scale, + use_norm=self.use_norm, + layer_idx=idx, + ) + + set_attn_processor(unet, dual_attn_processor) + + dual_attn_processor = {key.replace('.', '_'): value for key, value in dual_attn_processor.items()} + self.add_module('kv_attn_layers', nn.ModuleDict(dual_attn_processor)) + + def set_cross_attention_adapter(self, unet): + dual_attn_processor = get_attn_processor(unet) + for key in dual_attn_processor.keys(): + module_key = key.replace('.', '_') + dual_attn_processor[key] = self.kv_attn_layers[module_key] + print('set', key, module_key) + set_attn_processor(unet, dual_attn_processor) + + def forward(self, x): + # x shape [B, C] + return self.image_context_model(x) diff --git a/lvdm/modules/encoders/arch_transformer.py b/lvdm/modules/encoders/arch_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..931774891f7830381ee8725b9e4bc5774b9cd4ac --- /dev/null +++ b/lvdm/modules/encoders/arch_transformer.py @@ -0,0 +1,252 @@ +from collections import OrderedDict +import math +from typing import Callable, Optional, Sequence, Tuple + +import torch +from torch import nn +from torch.nn import functional as F +from torch.utils.checkpoint import checkpoint + +class LayerNormFp32(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm (with cast back to input dtype).""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + + +class QuickGELU(nn.Module): + # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + + +class PatchDropout(nn.Module): + """ + https://arxiv.org/abs/2212.00794 + """ + + def __init__(self, prob, exclude_first_token=True): + super().__init__() + assert 0 <= prob < 1. + self.prob = prob + self.exclude_first_token = exclude_first_token # exclude CLS token + + def forward(self, x): + if not self.training or self.prob == 0.: + return x + + if self.exclude_first_token: + cls_tokens, x = x[:, :1], x[:, 1:] + else: + cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) + + batch = x.size()[0] + num_tokens = x.size()[1] + + batch_indices = torch.arange(batch) + batch_indices = batch_indices[..., None] + + keep_prob = 1 - self.prob + num_patches_keep = max(1, int(num_tokens * keep_prob)) + + rand = torch.randn(batch, num_tokens) + patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices + + x = x[batch_indices, patch_indices_keep] + + if self.exclude_first_token: + x = torch.cat((cls_tokens, x), dim=1) + + return x + + +class Attention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=False, + scale_heads=False, + logit_scale_max=math.log(1. / 0.01), + attn_drop=0., + proj_drop=0. + ): + super().__init__() + self.scaled_cosine = scaled_cosine + self.scale_heads = scale_heads + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.logit_scale_max = logit_scale_max + + # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original + self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) + if qkv_bias: + self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) + else: + self.in_proj_bias = None + + if self.scaled_cosine: + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + else: + self.logit_scale = None + self.attn_drop = nn.Dropout(attn_drop) + if self.scale_heads: + self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) + else: + self.head_scale = None + self.out_proj = nn.Linear(dim, dim) + self.out_drop = nn.Dropout(proj_drop) + + def forward(self, x, attn_mask: Optional[torch.Tensor] = None): + L, N, C = x.shape + q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) + q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + + if self.logit_scale is not None: + attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) + logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() + attn = attn.view(N, self.num_heads, L, L) * logit_scale + attn = attn.view(-1, L, L) + else: + q = q * self.scale + attn = torch.bmm(q, k.transpose(-1, -2)) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) + new_attn_mask.masked_fill_(attn_mask, float("-inf")) + attn_mask = new_attn_mask + attn += attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = torch.bmm(attn, v) + if self.head_scale is not None: + x = x.view(N, self.num_heads, L, C) * self.head_scale + x = x.view(-1, L, C) + x = x.transpose(0, 1).reshape(L, N, C) + x = self.out_proj(x) + x = self.out_drop(x) + return x + + +class ResidualAttentionBlock(nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + is_cross_attention: bool = False, + ): + super().__init__() + + self.ln_1 = norm_layer(d_model) + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + if is_cross_attention: + self.ln_1_kv = norm_layer(d_model) + + self.ln_2 = norm_layer(d_model) + mlp_width = int(d_model * mlp_ratio) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, mlp_width)), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)) + ])) + self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + def attention( + self, + q_x: torch.Tensor, + k_x: Optional[torch.Tensor] = None, + v_x: Optional[torch.Tensor] = None, + attn_mask: Optional[torch.Tensor] = None, + ): + k_x = k_x if k_x is not None else q_x + v_x = v_x if v_x is not None else q_x + + attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None + return self.attn( + q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask + )[0] + + def forward( + self, + q_x: torch.Tensor, + k_x: Optional[torch.Tensor] = None, + v_x: Optional[torch.Tensor] = None, + attn_mask: Optional[torch.Tensor] = None, + ): + k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None + v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None + + x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)) + x = x + self.ls_2(self.mlp(self.ln_2(x))) + return x + + +class Transformer(nn.Module): + def __init__( + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + ): + super().__init__() + self.width = width + self.layers = layers + self.grad_checkpointing = False + + self.resblocks = nn.ModuleList([ + ResidualAttentionBlock( + width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer) + for _ in range(layers) + ]) + + def get_cast_dtype(self) -> torch.dtype: + if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'): + return self.resblocks[0].mlp.c_fc.int8_original_dtype + return self.resblocks[0].mlp.c_fc.weight.dtype + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + for r in self.resblocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 + x = checkpoint(r, x, None, None, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x \ No newline at end of file diff --git a/lvdm/modules/encoders/condition.py b/lvdm/modules/encoders/condition.py new file mode 100644 index 0000000000000000000000000000000000000000..fba54b2d2064a2c731df8b953428d63119c0a1f0 --- /dev/null +++ b/lvdm/modules/encoders/condition.py @@ -0,0 +1,461 @@ +import torch +import torch.nn as nn +from torch.utils.checkpoint import checkpoint +import kornia +import open_clip +from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel +from lvdm.common import autocast +from utils.utils import count_params +import os + +class AbstractEncoder(nn.Module): + def __init__(self): + super().__init__() + + def encode(self, *args, **kwargs): + raise NotImplementedError + + +class IdentityEncoder(AbstractEncoder): + + def encode(self, x): + return x + + +class ClassEmbedder(nn.Module): + def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): + super().__init__() + self.key = key + self.embedding = nn.Embedding(n_classes, embed_dim) + self.n_classes = n_classes + self.ucg_rate = ucg_rate + + def forward(self, batch, key=None, disable_dropout=False): + if key is None: + key = self.key + # this is for use in crossattn + c = batch[key][:, None] + if self.ucg_rate > 0. and not disable_dropout: + mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) + c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1) + c = c.long() + c = self.embedding(c) + return c + + def get_unconditional_conditioning(self, bs, device="cuda"): + uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) + uc = torch.ones((bs,), device=device) * uc_class + uc = {self.key: uc} + return uc + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +class FrozenT5Embedder(AbstractEncoder): + """Uses the T5 transformer encoder for text""" + + def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, + freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl + super().__init__() + self.tokenizer = T5Tokenizer.from_pretrained(version) + self.transformer = T5EncoderModel.from_pretrained(version) + self.device = device + self.max_length = max_length # TODO: typical value? + if freeze: + self.freeze() + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens) + + z = outputs.last_hidden_state + return z + + def encode(self, text): + return self(text) + + +class FrozenCLIPEmbedder(AbstractEncoder): + """Uses the CLIP transformer encoder for text (from huggingface)""" + LAYERS = [ + "last", + "pooled", + "hidden" + ] + + def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, + freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 + super().__init__() + assert layer in self.LAYERS + self.tokenizer = CLIPTokenizer.from_pretrained(version) + self.transformer = CLIPTextModel.from_pretrained(version) + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + self.layer_idx = layer_idx + if layer == "hidden": + assert layer_idx is not None + assert 0 <= abs(layer_idx) <= 12 + + def freeze(self): + self.transformer = self.transformer.eval() + # self.train = disabled_train + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, + return_overflowing_tokens=False, padding="max_length", return_tensors="pt") + tokens = batch_encoding["input_ids"].to(self.device) + outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden") + if self.layer == "last": + z = outputs.last_hidden_state + elif self.layer == "pooled": + z = outputs.pooler_output[:, None, :] + else: + z = outputs.hidden_states[self.layer_idx] + return z + + def encode(self, text): + return self(text) + + +class ClipImageEmbedder(nn.Module): + def __init__( + self, + model, + jit=False, + device='cuda' if torch.cuda.is_available() else 'cpu', + antialias=True, + ucg_rate=0. + ): + super().__init__() + from clip import load as load_clip + self.model, _ = load_clip(name=model, device=device, jit=jit) + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + self.ucg_rate = ucg_rate + + def preprocess(self, x): + # normalize to [0,1] + x = kornia.geometry.resize(x, (224, 224), + interpolation='bicubic', align_corners=True, + antialias=self.antialias) + x = (x + 1.) / 2. + # re-normalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def forward(self, x, no_dropout=False): + # x is assumed to be in range [-1,1] + out = self.model.encode_image(self.preprocess(x)) + out = out.to(x.dtype) + if self.ucg_rate > 0. and not no_dropout: + out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out + return out + + +class FrozenOpenCLIPEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP transformer encoder for text + """ + LAYERS = [ + # "pooled", + "last", + "penultimate" + ] + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, + freeze=True, layer="last"): + super().__init__() + assert layer in self.LAYERS + model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version,) + del model.visual + self.model = model + + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "last": + self.layer_idx = 0 + elif self.layer == "penultimate": + self.layer_idx = 1 + else: + raise NotImplementedError() + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + def forward(self, text): + self.device = self.model.positional_embedding.device + tokens = open_clip.tokenize(text) + z = self.encode_with_transformer(tokens.to(self.device)) + return z + + def encode_with_transformer(self, text): + x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] + x = x + self.model.positional_embedding + x = x.permute(1, 0, 2) # NLD -> LND + x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.model.ln_final(x) + return x + + def text_transformer_forward(self, x: torch.Tensor, attn_mask=None): + for i, r in enumerate(self.model.transformer.resblocks): + if i == len(self.model.transformer.resblocks) - self.layer_idx: + break + if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(r, x, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x + + def encode(self, text): + return self(text) + + +class FrozenOpenCLIPImageEmbedder(AbstractEncoder): + """ + Uses the OpenCLIP vision transformer encoder for images + """ + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, + freeze=True, layer="pooled", antialias=True, ucg_rate=0., only_cls=True, use_proj=True, + use_shuffle=False, mask_ratio=0.0): + super().__init__() + model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), + pretrained=version, ) + del model.transformer + self.model = model + self.mask_ratio = mask_ratio + # self.patch_dropout = PatchDropout(prob=patch_dropout, exclude_first_token=True) if patch_dropout > 0.0 else nn.Identity() + + self.device = device + self.max_length = max_length + if freeze: + self.freeze() + self.layer = layer + if self.layer == "penultimate": + raise NotImplementedError() + self.layer_idx = 1 + + self.antialias = antialias + + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + self.ucg_rate = ucg_rate + self.only_cls = only_cls + self.use_proj = use_proj + self.use_shuffle = use_shuffle + + def preprocess(self, x): + # normalize to [0,1] + x = kornia.geometry.resize(x, (224, 224), + interpolation='bicubic', align_corners=True, + antialias=self.antialias) + x = (x + 1.) / 2. + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def freeze(self): + self.model = self.model.eval() + for param in self.parameters(): + param.requires_grad = False + + @autocast + def forward(self, image, use_shuffle=False, drop_prob=None): + with torch.no_grad(): + z = self.encode_with_vision_transformer(image, use_shuffle, drop_prob) + return z.detach().half() + + @torch.no_grad() + def encode_with_vision_transformer(self, img, use_shuffle=False, mask_ratio=None): + if mask_ratio is None: + mask_ratio = self.mask_ratio + assert 0 <= mask_ratio < 1. + + x = self.preprocess(img) + + assert not self.model.visual.input_patchnorm + x = self.model.visual.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + + # shuffle + if use_shuffle: + x = x[:, torch.randperm(x.shape[1]), :] + + # class embeddings and positional embeddings + x = torch.cat( + [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.model.visual.positional_embedding.to(x.dtype) + + # patch dropout + x = self.random_masking(x, mask_ratio, exclude_first_token=True) + + x = self.model.visual.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.model.visual.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + assert self.model.visual.attn_pool is None + pooled, tokens = self.model.visual._global_pool(x) + pooled = self.model.visual.ln_post(pooled) + + if self.model.visual.proj is not None and self.use_proj: + pooled = pooled @ self.model.visual.proj + + if self.only_cls: + out = pooled.unsqueeze(1) + else: + out = torch.cat([pooled.unsqueeze(1), tokens], dim=1) + return out + + def encode(self, text): + return self(text) + + def random_masking(self, x, mask_ratio, exclude_first_token=True): + if mask_ratio == 0.: + return x + + N, L, D = x.shape + if exclude_first_token: + L = L - 1 + + len_keep = int(L * (1 - mask_ratio)) + noise = torch.rand(N, L, device=x.device) + + # sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=1) + ids_restore = torch.argsort(ids_shuffle, dim=1) + + # keep the first subset + ids_keep = ids_shuffle[:, :len_keep] + if exclude_first_token: + ids_keep = ids_keep + 1 + ids_keep = torch.cat([torch.zeros(N, 1, device=x.device, dtype=torch.long), ids_keep], dim=1) + x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) + + return x_masked + + +class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder): + """ + Uses the OpenCLIP vision transformer encoder for images + """ + + def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", + freeze=True, layer="pooled", antialias=True): + super().__init__() + model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), + pretrained=version, ) + del model.transformer + self.model = model + self.device = device + + if freeze: + self.freeze() + self.layer = layer + if self.layer == "penultimate": + raise NotImplementedError() + self.layer_idx = 1 + + self.antialias = antialias + self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) + self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) + + + def preprocess(self, x): + # normalize to [0,1] + x = kornia.geometry.resize(x, (224, 224), + interpolation='bicubic', align_corners=True, + antialias=self.antialias) + x = (x + 1.) / 2. + # renormalize according to clip + x = kornia.enhance.normalize(x, self.mean, self.std) + return x + + def freeze(self): + self.model = self.model.eval() + for param in self.model.parameters(): + param.requires_grad = False + + def forward(self, image, no_dropout=False): + ## image: b c h w + z = self.encode_with_vision_transformer(image) + return z + + def encode_with_vision_transformer(self, x): + x = self.preprocess(x) + + # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 + if self.model.visual.input_patchnorm: + # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') + x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1]) + x = x.permute(0, 2, 4, 1, 3, 5) + x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1) + x = self.model.visual.patchnorm_pre_ln(x) + x = self.model.visual.conv1(x) + else: + x = self.model.visual.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + + # class embeddings and positional embeddings + x = torch.cat( + [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.model.visual.positional_embedding.to(x.dtype) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + x = self.model.visual.patch_dropout(x) + x = self.model.visual.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.model.visual.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + return x + + +class FrozenCLIPT5Encoder(AbstractEncoder): + def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", + clip_max_length=77, t5_max_length=77): + super().__init__() + self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) + self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) + print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, " + f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.") + + def encode(self, text): + return self(text) + + def forward(self, text): + clip_z = self.clip_encoder.encode(text) + t5_z = self.t5_encoder.encode(text) + return [clip_z, t5_z] \ No newline at end of file diff --git a/lvdm/modules/encoders/ip_resampler.py b/lvdm/modules/encoders/ip_resampler.py new file mode 100644 index 0000000000000000000000000000000000000000..500820a789150a55d6e8fdca4dd3e4d6ad542d4a --- /dev/null +++ b/lvdm/modules/encoders/ip_resampler.py @@ -0,0 +1,136 @@ +# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py +import math +import torch +import torch.nn as nn + + +class ImageProjModel(nn.Module): + """Projection Model""" + def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): + super().__init__() + self.cross_attention_dim = cross_attention_dim + self.clip_extra_context_tokens = clip_extra_context_tokens + self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) + self.norm = nn.LayerNorm(cross_attention_dim) + + def forward(self, image_embeds): + #embeds = image_embeds + embeds = image_embeds.type(list(self.proj.parameters())[0].dtype) + clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) + clip_extra_context_tokens = self.norm(clip_extra_context_tokens) + return clip_extra_context_tokens + +# FFN +def FeedForward(dim, mult=4): + inner_dim = int(dim * mult) + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim, bias=False), + nn.GELU(), + nn.Linear(inner_dim, dim, bias=False), + ) + + +def reshape_tensor(x, heads): + bs, length, width = x.shape + #(bs, length, width) --> (bs, length, n_heads, dim_per_head) + x = x.view(bs, length, heads, -1) + # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) + x = x.transpose(1, 2) + # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) + x = x.reshape(bs, heads, length, -1) + return x + + +class PerceiverAttention(nn.Module): + def __init__(self, *, dim, dim_head=64, heads=8): + super().__init__() + self.scale = dim_head**-0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + + def forward(self, x, latents): + """ + Args: + x (torch.Tensor): image features + shape (b, n1, D) + latent (torch.Tensor): latent features + shape (b, n2, D) + """ + x = self.norm1(x) + latents = self.norm2(latents) + + b, l, _ = latents.shape + + q = self.to_q(latents) + kv_input = torch.cat((x, latents), dim=-2) + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + out = out.permute(0, 2, 1, 3).reshape(b, l, -1) + + return self.to_out(out) + + +class Resampler(nn.Module): + def __init__( + self, + dim=1024, + depth=8, + dim_head=64, + heads=16, + num_queries=8, + embedding_dim=768, + output_dim=1024, + ff_mult=4, + ): + super().__init__() + + self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) + + self.proj_in = nn.Linear(embedding_dim, dim) + + self.proj_out = nn.Linear(dim, output_dim) + self.norm_out = nn.LayerNorm(output_dim) + + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + nn.ModuleList( + [ + PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), + FeedForward(dim=dim, mult=ff_mult), + ] + ) + ) + + def forward(self, x): + + latents = self.latents.repeat(x.size(0), 1, 1) + + x = self.proj_in(x) + + for attn, ff in self.layers: + latents = attn(x, latents) + latents + latents = ff(latents) + latents + + latents = self.proj_out(latents) + return self.norm_out(latents) \ No newline at end of file diff --git a/lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc b/lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c97de5331a7ba45503240f6f34967d9177cc5f0 Binary files /dev/null and b/lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc differ diff --git a/lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc b/lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2bf7f70fefbd5781519b21fb282669c6d2153169 Binary files /dev/null and b/lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc differ diff --git a/lvdm/modules/networks/ae_modules.py b/lvdm/modules/networks/ae_modules.py new file mode 100644 index 0000000000000000000000000000000000000000..0c2e93fbadb4a0d86957a5cd73b5c2bf5b01a4b7 --- /dev/null +++ b/lvdm/modules/networks/ae_modules.py @@ -0,0 +1,845 @@ +# pytorch_diffusion + derived encoder decoder +import math +import torch +import numpy as np +import torch.nn as nn +from einops import rearrange +from utils.utils import instantiate_from_config +from lvdm.modules.attention import LinearAttention + +def nonlinearity(x): + # swish + return x*torch.sigmoid(x) + + +def Normalize(in_channels, num_groups=32): + return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) + + + +class LinAttnBlock(LinearAttention): + """to match AttnBlock usage""" + def __init__(self, in_channels): + super().__init__(dim=in_channels, heads=1, dim_head=in_channels) + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = Normalize(in_channels) + self.q = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.k = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.v = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + self.proj_out = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b,c,h,w = q.shape + q = q.reshape(b,c,h*w) # bcl + q = q.permute(0,2,1) # bcl -> blc l=hw + k = k.reshape(b,c,h*w) # bcl + + w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w_ = w_ * (int(c)**(-0.5)) + w_ = torch.nn.functional.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b,c,h*w) + w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) + h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + h_ = h_.reshape(b,c,h,w) + + h_ = self.proj_out(h_) + + return x+h_ + +def make_attn(in_channels, attn_type="vanilla"): + assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown' + #print(f"making attention of type '{attn_type}' with {in_channels} in_channels") + if attn_type == "vanilla": + return AttnBlock(in_channels) + elif attn_type == "none": + return nn.Identity(in_channels) + else: + return LinAttnBlock(in_channels) + +class Downsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + self.in_channels = in_channels + if self.with_conv: + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=2, + padding=0) + def forward(self, x): + if self.with_conv: + pad = (0,1,0,1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + else: + x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) + return x + +class Upsample(nn.Module): + def __init__(self, in_channels, with_conv): + super().__init__() + self.with_conv = with_conv + self.in_channels = in_channels + if self.with_conv: + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") + if self.with_conv: + x = self.conv(x) + return x + +def get_timestep_embedding(timesteps, embedding_dim): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: + From Fairseq. + Build sinusoidal embeddings. + This matches the implementation in tensor2tensor, but differs slightly + from the description in Section 3.5 of "Attention Is All You Need". + """ + assert len(timesteps.shape) == 1 + + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) + emb = emb.to(device=timesteps.device) + emb = timesteps.float()[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0,1,0,0)) + return emb + + + +class ResnetBlock(nn.Module): + def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, + dropout, temb_channels=512): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + self.norm1 = Normalize(in_channels) + self.conv1 = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if temb_channels > 0: + self.temb_proj = torch.nn.Linear(temb_channels, + out_channels) + self.norm2 = Normalize(out_channels) + self.dropout = torch.nn.Dropout(dropout) + self.conv2 = torch.nn.Conv2d(out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + self.conv_shortcut = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + else: + self.nin_shortcut = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0) + + def forward(self, x, temb): + h = x + h = self.norm1(h) + h = nonlinearity(h) + h = self.conv1(h) + + if temb is not None: + h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] + + h = self.norm2(h) + h = nonlinearity(h) + h = self.dropout(h) + h = self.conv2(h) + + if self.in_channels != self.out_channels: + if self.use_conv_shortcut: + x = self.conv_shortcut(x) + else: + x = self.nin_shortcut(x) + + return x+h + +class Model(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = self.ch*4 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + self.use_timestep = use_timestep + if self.use_timestep: + # timestep embedding + self.temb = nn.Module() + self.temb.dense = nn.ModuleList([ + torch.nn.Linear(self.ch, + self.temb_ch), + torch.nn.Linear(self.temb_ch, + self.temb_ch), + ]) + + # downsampling + self.conv_in = torch.nn.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + skip_in = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + if i_block == self.num_res_blocks: + skip_in = ch*in_ch_mult[i_level] + block.append(ResnetBlock(in_channels=block_in+skip_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x, t=None, context=None): + #assert x.shape[2] == x.shape[3] == self.resolution + if context is not None: + # assume aligned context, cat along channel axis + x = torch.cat((x, context), dim=1) + if self.use_timestep: + # timestep embedding + assert t is not None + temb = get_timestep_embedding(t, self.ch) + temb = self.temb.dense[0](temb) + temb = nonlinearity(temb) + temb = self.temb.dense[1](temb) + else: + temb = None + + # downsampling + hs = [self.conv_in(x)] + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions-1: + hs.append(self.down[i_level].downsample(hs[-1])) + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block]( + torch.cat([h, hs.pop()], dim=1), temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + if i_level != 0: + h = self.up[i_level].upsample(h) + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + def get_last_layer(self): + return self.conv_out.weight + + +class Encoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", + **ignore_kwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + + # downsampling + self.conv_in = torch.nn.Conv2d(in_channels, + self.ch, + kernel_size=3, + stride=1, + padding=1) + + curr_res = resolution + in_ch_mult = (1,)+tuple(ch_mult) + self.in_ch_mult = in_ch_mult + self.down = nn.ModuleList() + for i_level in range(self.num_resolutions): + block = nn.ModuleList() + attn = nn.ModuleList() + block_in = ch*in_ch_mult[i_level] + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + down = nn.Module() + down.block = block + down.attn = attn + if i_level != self.num_resolutions-1: + down.downsample = Downsample(block_in, resamp_with_conv) + curr_res = curr_res // 2 + self.down.append(down) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + 2*z_channels if double_z else z_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + # timestep embedding + temb = None + + # print(f'encoder-input={x.shape}') + # downsampling + hs = [self.conv_in(x)] + # print(f'encoder-conv in feat={hs[0].shape}') + for i_level in range(self.num_resolutions): + for i_block in range(self.num_res_blocks): + h = self.down[i_level].block[i_block](hs[-1], temb) + # print(f'encoder-down feat={h.shape}') + if len(self.down[i_level].attn) > 0: + h = self.down[i_level].attn[i_block](h) + hs.append(h) + if i_level != self.num_resolutions-1: + # print(f'encoder-downsample (input)={hs[-1].shape}') + hs.append(self.down[i_level].downsample(hs[-1])) + # print(f'encoder-downsample (output)={hs[-1].shape}') + + # middle + h = hs[-1] + h = self.mid.block_1(h, temb) + # print(f'encoder-mid1 feat={h.shape}') + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + # print(f'encoder-mid2 feat={h.shape}') + + # end + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + # print(f'end feat={h.shape}') + return h + + +class Decoder(nn.Module): + def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, + resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, + attn_type="vanilla", **ignorekwargs): + super().__init__() + if use_linear_attn: attn_type = "linear" + self.ch = ch + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.in_channels = in_channels + self.give_pre_end = give_pre_end + self.tanh_out = tanh_out + + # compute in_ch_mult, block_in and curr_res at lowest res + in_ch_mult = (1,)+tuple(ch_mult) + block_in = ch*ch_mult[self.num_resolutions-1] + curr_res = resolution // 2**(self.num_resolutions-1) + self.z_shape = (1,z_channels,curr_res,curr_res) + print("AE working on z of shape {} = {} dimensions.".format( + self.z_shape, np.prod(self.z_shape))) + + # z to block_in + self.conv_in = torch.nn.Conv2d(z_channels, + block_in, + kernel_size=3, + stride=1, + padding=1) + + # middle + self.mid = nn.Module() + self.mid.block_1 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) + self.mid.block_2 = ResnetBlock(in_channels=block_in, + out_channels=block_in, + temb_channels=self.temb_ch, + dropout=dropout) + + # upsampling + self.up = nn.ModuleList() + for i_level in reversed(range(self.num_resolutions)): + block = nn.ModuleList() + attn = nn.ModuleList() + block_out = ch*ch_mult[i_level] + for i_block in range(self.num_res_blocks+1): + block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + if curr_res in attn_resolutions: + attn.append(make_attn(block_in, attn_type=attn_type)) + up = nn.Module() + up.block = block + up.attn = attn + if i_level != 0: + up.upsample = Upsample(block_in, resamp_with_conv) + curr_res = curr_res * 2 + self.up.insert(0, up) # prepend to get consistent order + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_ch, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, z): + #assert z.shape[1:] == self.z_shape[1:] + self.last_z_shape = z.shape + + # print(f'decoder-input={z.shape}') + # timestep embedding + temb = None + + # z to block_in + h = self.conv_in(z) + # print(f'decoder-conv in feat={h.shape}') + + # middle + h = self.mid.block_1(h, temb) + h = self.mid.attn_1(h) + h = self.mid.block_2(h, temb) + # print(f'decoder-mid feat={h.shape}') + + # upsampling + for i_level in reversed(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks+1): + h = self.up[i_level].block[i_block](h, temb) + if len(self.up[i_level].attn) > 0: + h = self.up[i_level].attn[i_block](h) + # print(f'decoder-up feat={h.shape}') + if i_level != 0: + h = self.up[i_level].upsample(h) + # print(f'decoder-upsample feat={h.shape}') + + # end + if self.give_pre_end: + return h + + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + # print(f'decoder-conv_out feat={h.shape}') + if self.tanh_out: + h = torch.tanh(h) + return h + + +class SimpleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, *args, **kwargs): + super().__init__() + self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), + ResnetBlock(in_channels=in_channels, + out_channels=2 * in_channels, + temb_channels=0, dropout=0.0), + ResnetBlock(in_channels=2 * in_channels, + out_channels=4 * in_channels, + temb_channels=0, dropout=0.0), + ResnetBlock(in_channels=4 * in_channels, + out_channels=2 * in_channels, + temb_channels=0, dropout=0.0), + nn.Conv2d(2*in_channels, in_channels, 1), + Upsample(in_channels, with_conv=True)]) + # end + self.norm_out = Normalize(in_channels) + self.conv_out = torch.nn.Conv2d(in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + for i, layer in enumerate(self.model): + if i in [1,2,3]: + x = layer(x, None) + else: + x = layer(x) + + h = self.norm_out(x) + h = nonlinearity(h) + x = self.conv_out(h) + return x + + +class UpsampleDecoder(nn.Module): + def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, + ch_mult=(2,2), dropout=0.0): + super().__init__() + # upsampling + self.temb_ch = 0 + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + block_in = in_channels + curr_res = resolution // 2 ** (self.num_resolutions - 1) + self.res_blocks = nn.ModuleList() + self.upsample_blocks = nn.ModuleList() + for i_level in range(self.num_resolutions): + res_block = [] + block_out = ch * ch_mult[i_level] + for i_block in range(self.num_res_blocks + 1): + res_block.append(ResnetBlock(in_channels=block_in, + out_channels=block_out, + temb_channels=self.temb_ch, + dropout=dropout)) + block_in = block_out + self.res_blocks.append(nn.ModuleList(res_block)) + if i_level != self.num_resolutions - 1: + self.upsample_blocks.append(Upsample(block_in, True)) + curr_res = curr_res * 2 + + # end + self.norm_out = Normalize(block_in) + self.conv_out = torch.nn.Conv2d(block_in, + out_channels, + kernel_size=3, + stride=1, + padding=1) + + def forward(self, x): + # upsampling + h = x + for k, i_level in enumerate(range(self.num_resolutions)): + for i_block in range(self.num_res_blocks + 1): + h = self.res_blocks[i_level][i_block](h, None) + if i_level != self.num_resolutions - 1: + h = self.upsample_blocks[k](h) + h = self.norm_out(h) + h = nonlinearity(h) + h = self.conv_out(h) + return h + + +class LatentRescaler(nn.Module): + def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): + super().__init__() + # residual block, interpolate, residual block + self.factor = factor + self.conv_in = nn.Conv2d(in_channels, + mid_channels, + kernel_size=3, + stride=1, + padding=1) + self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0) for _ in range(depth)]) + self.attn = AttnBlock(mid_channels) + self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, + out_channels=mid_channels, + temb_channels=0, + dropout=0.0) for _ in range(depth)]) + + self.conv_out = nn.Conv2d(mid_channels, + out_channels, + kernel_size=1, + ) + + def forward(self, x): + x = self.conv_in(x) + for block in self.res_block1: + x = block(x, None) + x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) + x = self.attn(x) + for block in self.res_block2: + x = block(x, None) + x = self.conv_out(x) + return x + + +class MergedRescaleEncoder(nn.Module): + def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, + attn_resolutions, dropout=0.0, resamp_with_conv=True, + ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): + super().__init__() + intermediate_chn = ch * ch_mult[-1] + self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, + z_channels=intermediate_chn, double_z=False, resolution=resolution, + attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, + out_ch=None) + self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, + mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) + + def forward(self, x): + x = self.encoder(x) + x = self.rescaler(x) + return x + + +class MergedRescaleDecoder(nn.Module): + def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), + dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): + super().__init__() + tmp_chn = z_channels*ch_mult[-1] + self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, + resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, + ch_mult=ch_mult, resolution=resolution, ch=ch) + self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, + out_channels=tmp_chn, depth=rescale_module_depth) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Upsampler(nn.Module): + def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): + super().__init__() + assert out_size >= in_size + num_blocks = int(np.log2(out_size//in_size))+1 + factor_up = 1.+ (out_size % in_size) + print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") + self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, + out_channels=in_channels) + self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, + attn_resolutions=[], in_channels=None, ch=in_channels, + ch_mult=[ch_mult for _ in range(num_blocks)]) + + def forward(self, x): + x = self.rescaler(x) + x = self.decoder(x) + return x + + +class Resize(nn.Module): + def __init__(self, in_channels=None, learned=False, mode="bilinear"): + super().__init__() + self.with_conv = learned + self.mode = mode + if self.with_conv: + print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") + raise NotImplementedError() + assert in_channels is not None + # no asymmetric padding in torch conv, must do it ourselves + self.conv = torch.nn.Conv2d(in_channels, + in_channels, + kernel_size=4, + stride=2, + padding=1) + + def forward(self, x, scale_factor=1.0): + if scale_factor==1.0: + return x + else: + x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) + return x + +class FirstStagePostProcessor(nn.Module): + + def __init__(self, ch_mult:list, in_channels, + pretrained_model:nn.Module=None, + reshape=False, + n_channels=None, + dropout=0., + pretrained_config=None): + super().__init__() + if pretrained_config is None: + assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' + self.pretrained_model = pretrained_model + else: + assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None' + self.instantiate_pretrained(pretrained_config) + + self.do_reshape = reshape + + if n_channels is None: + n_channels = self.pretrained_model.encoder.ch + + self.proj_norm = Normalize(in_channels,num_groups=in_channels//2) + self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3, + stride=1,padding=1) + + blocks = [] + downs = [] + ch_in = n_channels + for m in ch_mult: + blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout)) + ch_in = m * n_channels + downs.append(Downsample(ch_in, with_conv=False)) + + self.model = nn.ModuleList(blocks) + self.downsampler = nn.ModuleList(downs) + + + def instantiate_pretrained(self, config): + model = instantiate_from_config(config) + self.pretrained_model = model.eval() + # self.pretrained_model.train = False + for param in self.pretrained_model.parameters(): + param.requires_grad = False + + + @torch.no_grad() + def encode_with_pretrained(self,x): + c = self.pretrained_model.encode(x) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + return c + + def forward(self,x): + z_fs = self.encode_with_pretrained(x) + z = self.proj_norm(z_fs) + z = self.proj(z) + z = nonlinearity(z) + + for submodel, downmodel in zip(self.model,self.downsampler): + z = submodel(z,temb=None) + z = downmodel(z) + + if self.do_reshape: + z = rearrange(z,'b c h w -> b (h w) c') + return z + diff --git a/lvdm/modules/networks/openaimodel3d.py b/lvdm/modules/networks/openaimodel3d.py new file mode 100644 index 0000000000000000000000000000000000000000..7eb393ad352f1e783f8bb49ca4fefe01715f98ce --- /dev/null +++ b/lvdm/modules/networks/openaimodel3d.py @@ -0,0 +1,641 @@ +from functools import partial +from abc import abstractmethod +import torch +import torch.nn as nn +from einops import rearrange +import torch.nn.functional as F +from lvdm.models.utils_diffusion import timestep_embedding +from lvdm.common import checkpoint +from lvdm.basics import ( + zero_module, + conv_nd, + linear, + avg_pool_nd, + normalization +) +from lvdm.modules.attention import SpatialTransformer, TemporalTransformer + + +class TimestepBlock(nn.Module): + """ + Any module where forward() takes timestep embeddings as a second argument. + """ + @abstractmethod + def forward(self, x, emb): + """ + Apply the module to `x` given `emb` timestep embeddings. + """ + + +class TimestepEmbedSequential(nn.Sequential, TimestepBlock): + """ + A sequential module that passes timestep embeddings to the children that + support it as an extra input. + """ + + def forward(self, x, emb, context=None, batch_size=None, is_imgbatch=False, use_temp=True, scale_scalar=None): + for layer in self: + if isinstance(layer, TimestepBlock): + x = layer(x, emb, batch_size, is_imgbatch=is_imgbatch) + elif isinstance(layer, SpatialTransformer): + x = layer(x, context, emb, scale_scalar=scale_scalar) + elif isinstance(layer, TemporalTransformer): + if use_temp: + x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size) + x = layer(x, context, is_imgbatch=is_imgbatch, emb=emb) + x = rearrange(x, 'b c f h w -> (b f) c h w') + else: + pass + else: + x = layer(x,) + return x + + +class Downsample(nn.Module): + """ + A downsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + downsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + stride = 2 if dims != 3 else (1, 2, 2) + if use_conv: + self.op = conv_nd( + dims, self.channels, self.out_channels, 3, stride=stride, padding=padding + ) + else: + assert self.channels == self.out_channels + self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) + + def forward(self, x): + assert x.shape[1] == self.channels + return self.op(x) + + +class Upsample(nn.Module): + """ + An upsampling layer with an optional convolution. + :param channels: channels in the inputs and outputs. + :param use_conv: a bool determining if a convolution is applied. + :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then + upsampling occurs in the inner-two dimensions. + """ + + def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): + super().__init__() + self.channels = channels + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.dims = dims + if use_conv: + self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) + + def forward(self, x): + assert x.shape[1] == self.channels + if self.dims == 3: + x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest') + else: + x = F.interpolate(x, scale_factor=2, mode='nearest') + if self.use_conv: + x = self.conv(x) + return x + + +class ResBlock(TimestepBlock): + """ + A residual block that can optionally change the number of channels. + :param channels: the number of input channels. + :param emb_channels: the number of timestep embedding channels. + :param dropout: the rate of dropout. + :param out_channels: if specified, the number of out channels. + :param use_conv: if True and out_channels is specified, use a spatial + convolution instead of a smaller 1x1 convolution to change the + channels in the skip connection. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param up: if True, use this block for upsampling. + :param down: if True, use this block for downsampling. + """ + + def __init__( + self, + channels, + emb_channels, + dropout, + out_channels=None, + use_scale_shift_norm=False, + dims=2, + use_checkpoint=False, + use_conv=False, + up=False, + down=False, + use_temporal_conv=False, + tempspatial_aware=False + ): + super().__init__() + self.channels = channels + self.emb_channels = emb_channels + self.dropout = dropout + self.out_channels = out_channels or channels + self.use_conv = use_conv + self.use_checkpoint = use_checkpoint + self.use_scale_shift_norm = use_scale_shift_norm + self.use_temporal_conv = use_temporal_conv + + self.in_layers = nn.Sequential( + normalization(channels), + nn.SiLU(), + conv_nd(dims, channels, self.out_channels, 3, padding=1), + ) + + self.updown = up or down + + if up: + self.h_upd = Upsample(channels, False, dims) + self.x_upd = Upsample(channels, False, dims) + elif down: + self.h_upd = Downsample(channels, False, dims) + self.x_upd = Downsample(channels, False, dims) + else: + self.h_upd = self.x_upd = nn.Identity() + + self.emb_layers = nn.Sequential( + nn.SiLU(), + nn.Linear( + emb_channels, + 2 * self.out_channels if use_scale_shift_norm else self.out_channels, + ), + ) + self.out_layers = nn.Sequential( + normalization(self.out_channels), + nn.SiLU(), + nn.Dropout(p=dropout), + zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), + ) + + if self.out_channels == channels: + self.skip_connection = nn.Identity() + elif use_conv: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) + else: + self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) + + if self.use_temporal_conv: + self.temopral_conv = TemporalConvBlock( + self.out_channels, + self.out_channels, + dropout=0.1, + spatial_aware=tempspatial_aware + ) + + def forward(self, x, emb, batch_size=None, is_imgbatch=False): + """ + Apply the block to a Tensor, conditioned on a timestep embedding. + :param x: an [N x C x ...] Tensor of features. + :param emb: an [N x emb_channels] Tensor of timestep embeddings. + :return: an [N x C x ...] Tensor of outputs. + """ + input_tuple = (x, emb,) + if batch_size: + forward_batchsize = partial(self._forward, batch_size=batch_size, is_imgbatch=is_imgbatch) + return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint) + return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint) + + def _forward(self, x, emb, batch_size=None, is_imgbatch=False): + if self.updown: + in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] + h = in_rest(x) + h = self.h_upd(h) + x = self.x_upd(x) + h = in_conv(h) + else: + h = self.in_layers(x) + emb_out = self.emb_layers(emb).type(h.dtype) + while len(emb_out.shape) < len(h.shape): + emb_out = emb_out[..., None] + if self.use_scale_shift_norm: + out_norm, out_rest = self.out_layers[0], self.out_layers[1:] + scale, shift = torch.chunk(emb_out, 2, dim=1) + h = out_norm(h) * (1 + scale) + shift + h = out_rest(h) + else: + h = h + emb_out + h = self.out_layers(h) + h = self.skip_connection(x) + h + + if self.use_temporal_conv and batch_size and not is_imgbatch: + h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size) + h = self.temopral_conv(h) + h = rearrange(h, 'b c t h w -> (b t) c h w') + return h + + +class TemporalConvBlock(nn.Module): + """ + Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py + """ + + def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False): + super(TemporalConvBlock, self).__init__() + if out_channels is None: + out_channels = in_channels + self.in_channels = in_channels + self.out_channels = out_channels + kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3) + padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1) + + # conv layers + self.conv1 = nn.Sequential( + nn.GroupNorm(32, in_channels), nn.SiLU(), + nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape)) + self.conv2 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape)) + self.conv3 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0))) + self.conv4 = nn.Sequential( + nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout), + nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0))) + + # zero out the last layer params,so the conv block is identity + nn.init.zeros_(self.conv4[-1].weight) + nn.init.zeros_(self.conv4[-1].bias) + + def forward(self, x): + identity = x + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + x = self.conv4(x) + + return x + identity + + +class UNetModel(nn.Module): + """ + The full UNet model with attention and timestep embedding. + :param in_channels: in_channels in the input Tensor. + :param model_channels: base channel count for the model. + :param out_channels: channels in the output Tensor. + :param num_res_blocks: number of residual blocks per downsample. + :param attention_resolutions: a collection of downsample rates at which + attention will take place. May be a set, list, or tuple. + For example, if this contains 4, then at 4x downsampling, attention + will be used. + :param dropout: the dropout probability. + :param channel_mult: channel multiplier for each level of the UNet. + :param conv_resample: if True, use learned convolutions for upsampling and + downsampling. + :param dims: determines if the signal is 1D, 2D, or 3D. + :param num_classes: if specified (as an int), then this model will be + class-conditional with `num_classes` classes. + :param use_checkpoint: use gradient checkpointing to reduce memory usage. + :param num_heads: the number of attention heads in each attention layer. + :param num_heads_channels: if specified, ignore num_heads and instead use + a fixed channel width per attention head. + :param num_heads_upsample: works with num_heads to set a different number + of heads for upsampling. Deprecated. + :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. + :param resblock_updown: use residual blocks for up/downsampling. + """ + + def __init__(self, + in_channels, + model_channels, + out_channels, + num_res_blocks, + attention_resolutions, + dropout=0.0, + channel_mult=(1, 2, 4, 8), + conv_resample=True, + dims=2, + context_dim=None, + use_scale_shift_norm=False, + resblock_updown=False, + num_heads=-1, + num_head_channels=-1, + transformer_depth=1, + use_linear=False, + use_checkpoint=False, + temporal_conv=False, + tempspatial_aware=False, + temporal_attention=True, + temporal_selfatt_only=True, + use_relative_position=True, + use_causal_attention=False, + temporal_length=None, + use_fp16=False, + addition_attention=False, + use_image_attention=False, + temporal_transformer_depth=1, + fps_cond=False, + ): + super(UNetModel, self).__init__() + if num_heads == -1: + assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' + if num_head_channels == -1: + assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' + + self.in_channels = in_channels + self.model_channels = model_channels + self.out_channels = out_channels + self.num_res_blocks = num_res_blocks + self.attention_resolutions = attention_resolutions + self.dropout = dropout + self.channel_mult = channel_mult + self.conv_resample = conv_resample + self.temporal_attention = temporal_attention + time_embed_dim = model_channels * 4 + self.use_checkpoint = use_checkpoint + self.dtype = torch.float16 if use_fp16 else torch.float32 + self.addition_attention=addition_attention + self.use_image_attention = use_image_attention + self.fps_cond=fps_cond + + + + self.time_embed = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + if self.fps_cond: + self.fps_embedding = nn.Sequential( + linear(model_channels, time_embed_dim), + nn.SiLU(), + linear(time_embed_dim, time_embed_dim), + ) + + self.input_blocks = nn.ModuleList( + [ + TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1)) + ] + ) + if self.addition_attention: + self.init_attn=TimestepEmbedSequential( + TemporalTransformer( + model_channels, + n_heads=8, + d_head=num_head_channels, + depth=transformer_depth, + context_dim=context_dim, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length)) + + input_block_chans = [model_channels] + ch = model_channels + ds = 1 + for level, mult in enumerate(channel_mult): + for _ in range(num_res_blocks): + layers = [ + ResBlock(ch, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = mult * model_channels + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + img_cross_attention=self.use_image_attention + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + self.input_blocks.append(TimestepEmbedSequential(*layers)) + input_block_chans.append(ch) + if level != len(channel_mult) - 1: + out_ch = ch + self.input_blocks.append( + TimestepEmbedSequential( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + down=True + ) + if resblock_updown + else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ) + ch = out_ch + input_block_chans.append(ch) + ds *= 2 + + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers = [ + ResBlock(ch, time_embed_dim, dropout, + dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ), + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + img_cross_attention=self.use_image_attention + ) + ] + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + layers.append( + ResBlock(ch, time_embed_dim, dropout, + dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ) + self.middle_block = TimestepEmbedSequential(*layers) + + self.output_blocks = nn.ModuleList([]) + for level, mult in list(enumerate(channel_mult))[::-1]: + for i in range(num_res_blocks + 1): + ich = input_block_chans.pop() + layers = [ + ResBlock(ch + ich, time_embed_dim, dropout, + out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, + use_temporal_conv=temporal_conv + ) + ] + ch = model_channels * mult + if ds in attention_resolutions: + if num_head_channels == -1: + dim_head = ch // num_heads + else: + num_heads = ch // num_head_channels + dim_head = num_head_channels + layers.append( + SpatialTransformer(ch, num_heads, dim_head, + depth=transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, disable_self_attn=False, + img_cross_attention=self.use_image_attention + ) + ) + if self.temporal_attention: + layers.append( + TemporalTransformer(ch, num_heads, dim_head, + depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear, + use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, + causal_attention=use_causal_attention, relative_position=use_relative_position, + temporal_length=temporal_length + ) + ) + if level and i == num_res_blocks: + out_ch = ch + layers.append( + ResBlock(ch, time_embed_dim, dropout, + out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, + use_scale_shift_norm=use_scale_shift_norm, + up=True + ) + if resblock_updown + else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) + ) + ds //= 2 + self.output_blocks.append(TimestepEmbedSequential(*layers)) + + self.out = nn.Sequential( + normalization(ch), + nn.SiLU(), + zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), + ) + + def forward(self, x, timesteps, context=None, append_to_context=None, features_adapter=None, scale_scalar=None, is_imgbatch=False, fps=16, **kwargs): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + # add style context + if append_to_context is not None: + context = torch.cat((context, append_to_context), dim=1) + + + if self.fps_cond: + if type(fps) == int: + fps = torch.full_like(timesteps, fps) + fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False) + emb += self.fps_embedding(fps_emb) + + b,_,t,_,_ = x.shape + ## repeat t times for context [(b t) 77 768] & time embedding + if not is_imgbatch: + context = context.repeat_interleave(repeats=t, dim=0) + if scale_scalar is not None: + scale_scalar = scale_scalar.repeat_interleave(repeats=t, dim=0) + + emb = emb.repeat_interleave(repeats=t, dim=0) + + ## always in shape (b t) c h w, except for temporal layer + x = rearrange(x, 'b c t h w -> (b t) c h w') + + h = x.type(self.dtype) + adapter_idx = 0 + hs = [] + for id, module in enumerate(self.input_blocks): + h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar) + if id ==0 and self.addition_attention: + h = self.init_attn(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar) + ## plug-in adapter features + if ((id+1)%3 == 0) and features_adapter is not None: + h = h + features_adapter[adapter_idx] + adapter_idx += 1 + hs.append(h) + if features_adapter is not None: + assert len(features_adapter)==adapter_idx, 'Wrong features_adapter' + + h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar) + for module in self.output_blocks: + h = torch.cat([h, hs.pop()], dim=1) + h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch, scale_scalar=scale_scalar) + h = h.type(x.dtype) + y = self.out(h) + + # reshape back to (b c t h w) + y = rearrange(y, '(b t) c h w -> b c t h w', b=b) + return y + + + +class UNet2DModel(UNetModel): + def forward(self, x, timesteps, context=None, append_to_context=None, features_adapter=None, scale_scalar=None, fps=16, use_temp=False, **kwargs): + t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) + emb = self.time_embed(t_emb) + + if self.fps_cond: + if type(fps) == int: + fps = torch.full_like(timesteps, fps) + fps_emb = timestep_embedding(fps,self.model_channels, repeat_only=False) + emb += self.fps_embedding(fps_emb) + + b,_,t,_,_ = x.shape + ## repeat t times for context [(b t) 77 768] & time embedding + if context.shape[0] != b*t: + context = context.repeat_interleave(repeats=t, dim=0) + if emb.shape[0] != b*t: + emb = emb.repeat_interleave(repeats=t, dim=0) + + # add style context + if append_to_context is not None: + context = torch.cat((context, append_to_context), dim=1) + + ## always in shape (b t) c h w, except for temporal layer + x = rearrange(x, 'b c t h w -> (b t) c h w') + + h = x.type(self.dtype) + adapter_idx = 0 + hs = [] + for id, module in enumerate(self.input_blocks): + h = module(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar) + if id ==0 and self.addition_attention: + h = self.init_attn(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar) + ## plug-in adapter features + if ((id+1)%3 == 0) and features_adapter is not None: + h = h + features_adapter[adapter_idx] + adapter_idx += 1 + hs.append(h) + if features_adapter is not None: + assert len(features_adapter)==adapter_idx, 'Wrong features_adapter' + + h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar) + for module in self.output_blocks: + h = torch.cat([h, hs.pop()], dim=1) + h = module(h, emb, context=context, batch_size=b, is_imgbatch=True, use_temp=use_temp, scale_scalar=scale_scalar) + h = h.type(x.dtype) + y = self.out(h) + + # reshape back to (b c t h w) + y = rearrange(y, '(b t) c h w -> b c t h w', b=b) + return y diff --git a/lvdm/modules/x_transformer.py b/lvdm/modules/x_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f252ab4032a78407ed487495807940c4ba802ffa --- /dev/null +++ b/lvdm/modules/x_transformer.py @@ -0,0 +1,640 @@ +"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" +from functools import partial +from inspect import isfunction +from collections import namedtuple +from einops import rearrange, repeat +import torch +from torch import nn, einsum +import torch.nn.functional as F + +# constants +DEFAULT_DIM_HEAD = 64 + +Intermediates = namedtuple('Intermediates', [ + 'pre_softmax_attn', + 'post_softmax_attn' +]) + +LayerIntermediates = namedtuple('Intermediates', [ + 'hiddens', + 'attn_intermediates' +]) + + +class AbsolutePositionalEmbedding(nn.Module): + def __init__(self, dim, max_seq_len): + super().__init__() + self.emb = nn.Embedding(max_seq_len, dim) + self.init_() + + def init_(self): + nn.init.normal_(self.emb.weight, std=0.02) + + def forward(self, x): + n = torch.arange(x.shape[1], device=x.device) + return self.emb(n)[None, :, :] + + +class FixedPositionalEmbedding(nn.Module): + def __init__(self, dim): + super().__init__() + inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) + self.register_buffer('inv_freq', inv_freq) + + def forward(self, x, seq_dim=1, offset=0): + t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset + sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) + emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) + return emb[None, :, :] + + +# helpers + +def exists(val): + return val is not None + + +def default(val, d): + if exists(val): + return val + return d() if isfunction(d) else d + + +def always(val): + def inner(*args, **kwargs): + return val + return inner + + +def not_equals(val): + def inner(x): + return x != val + return inner + + +def equals(val): + def inner(x): + return x == val + return inner + + +def max_neg_value(tensor): + return -torch.finfo(tensor.dtype).max + + +# keyword argument helpers + +def pick_and_pop(keys, d): + values = list(map(lambda key: d.pop(key), keys)) + return dict(zip(keys, values)) + + +def group_dict_by_key(cond, d): + return_val = [dict(), dict()] + for key in d.keys(): + match = bool(cond(key)) + ind = int(not match) + return_val[ind][key] = d[key] + return (*return_val,) + + +def string_begins_with(prefix, str): + return str.startswith(prefix) + + +def group_by_key_prefix(prefix, d): + return group_dict_by_key(partial(string_begins_with, prefix), d) + + +def groupby_prefix_and_trim(prefix, d): + kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) + kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) + return kwargs_without_prefix, kwargs + + +# classes +class Scale(nn.Module): + def __init__(self, value, fn): + super().__init__() + self.value = value + self.fn = fn + + def forward(self, x, **kwargs): + x, *rest = self.fn(x, **kwargs) + return (x * self.value, *rest) + + +class Rezero(nn.Module): + def __init__(self, fn): + super().__init__() + self.fn = fn + self.g = nn.Parameter(torch.zeros(1)) + + def forward(self, x, **kwargs): + x, *rest = self.fn(x, **kwargs) + return (x * self.g, *rest) + + +class ScaleNorm(nn.Module): + def __init__(self, dim, eps=1e-5): + super().__init__() + self.scale = dim ** -0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(1)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class RMSNorm(nn.Module): + def __init__(self, dim, eps=1e-8): + super().__init__() + self.scale = dim ** -0.5 + self.eps = eps + self.g = nn.Parameter(torch.ones(dim)) + + def forward(self, x): + norm = torch.norm(x, dim=-1, keepdim=True) * self.scale + return x / norm.clamp(min=self.eps) * self.g + + +class Residual(nn.Module): + def forward(self, x, residual): + return x + residual + + +class GRUGating(nn.Module): + def __init__(self, dim): + super().__init__() + self.gru = nn.GRUCell(dim, dim) + + def forward(self, x, residual): + gated_output = self.gru( + rearrange(x, 'b n d -> (b n) d'), + rearrange(residual, 'b n d -> (b n) d') + ) + + return gated_output.reshape_as(x) + + +# feedforward + +class GEGLU(nn.Module): + def __init__(self, dim_in, dim_out): + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x): + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): + super().__init__() + inner_dim = int(dim * mult) + dim_out = default(dim_out, dim) + project_in = nn.Sequential( + nn.Linear(dim, inner_dim), + nn.GELU() + ) if not glu else GEGLU(dim, inner_dim) + + self.net = nn.Sequential( + project_in, + nn.Dropout(dropout), + nn.Linear(inner_dim, dim_out) + ) + + def forward(self, x): + return self.net(x) + + +# attention. +class Attention(nn.Module): + def __init__( + self, + dim, + dim_head=DEFAULT_DIM_HEAD, + heads=8, + causal=False, + mask=None, + talking_heads=False, + sparse_topk=None, + use_entmax15=False, + num_mem_kv=0, + dropout=0., + on_attn=False + ): + super().__init__() + if use_entmax15: + raise NotImplementedError("Check out entmax activation instead of softmax activation!") + self.scale = dim_head ** -0.5 + self.heads = heads + self.causal = causal + self.mask = mask + + inner_dim = dim_head * heads + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_k = nn.Linear(dim, inner_dim, bias=False) + self.to_v = nn.Linear(dim, inner_dim, bias=False) + self.dropout = nn.Dropout(dropout) + + # talking heads + self.talking_heads = talking_heads + if talking_heads: + self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) + + # explicit topk sparse attention + self.sparse_topk = sparse_topk + + # entmax + #self.attn_fn = entmax15 if use_entmax15 else F.softmax + self.attn_fn = F.softmax + + # add memory key / values + self.num_mem_kv = num_mem_kv + if num_mem_kv > 0: + self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) + + # attention on attention + self.attn_on_attn = on_attn + self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) + + def forward( + self, + x, + context=None, + mask=None, + context_mask=None, + rel_pos=None, + sinusoidal_emb=None, + prev_attn=None, + mem=None + ): + b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device + kv_input = default(context, x) + + q_input = x + k_input = kv_input + v_input = kv_input + + if exists(mem): + k_input = torch.cat((mem, k_input), dim=-2) + v_input = torch.cat((mem, v_input), dim=-2) + + if exists(sinusoidal_emb): + # in shortformer, the query would start at a position offset depending on the past cached memory + offset = k_input.shape[-2] - q_input.shape[-2] + q_input = q_input + sinusoidal_emb(q_input, offset=offset) + k_input = k_input + sinusoidal_emb(k_input) + + q = self.to_q(q_input) + k = self.to_k(k_input) + v = self.to_v(v_input) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) + + input_mask = None + if any(map(exists, (mask, context_mask))): + q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) + k_mask = q_mask if not exists(context) else context_mask + k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) + q_mask = rearrange(q_mask, 'b i -> b () i ()') + k_mask = rearrange(k_mask, 'b j -> b () () j') + input_mask = q_mask * k_mask + + if self.num_mem_kv > 0: + mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) + k = torch.cat((mem_k, k), dim=-2) + v = torch.cat((mem_v, v), dim=-2) + if exists(input_mask): + input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) + + dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale + mask_value = max_neg_value(dots) + + if exists(prev_attn): + dots = dots + prev_attn + + pre_softmax_attn = dots + + if talking_heads: + dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() + + if exists(rel_pos): + dots = rel_pos(dots) + + if exists(input_mask): + dots.masked_fill_(~input_mask, mask_value) + del input_mask + + if self.causal: + i, j = dots.shape[-2:] + r = torch.arange(i, device=device) + mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') + mask = F.pad(mask, (j - i, 0), value=False) + dots.masked_fill_(mask, mask_value) + del mask + + if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: + top, _ = dots.topk(self.sparse_topk, dim=-1) + vk = top[..., -1].unsqueeze(-1).expand_as(dots) + mask = dots < vk + dots.masked_fill_(mask, mask_value) + del mask + + attn = self.attn_fn(dots, dim=-1) + post_softmax_attn = attn + + attn = self.dropout(attn) + + if talking_heads: + attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() + + out = einsum('b h i j, b h j d -> b h i d', attn, v) + out = rearrange(out, 'b h n d -> b n (h d)') + + intermediates = Intermediates( + pre_softmax_attn=pre_softmax_attn, + post_softmax_attn=post_softmax_attn + ) + + return self.to_out(out), intermediates + + +class AttentionLayers(nn.Module): + def __init__( + self, + dim, + depth, + heads=8, + causal=False, + cross_attend=False, + only_cross=False, + use_scalenorm=False, + use_rmsnorm=False, + use_rezero=False, + rel_pos_num_buckets=32, + rel_pos_max_distance=128, + position_infused_attn=False, + custom_layers=None, + sandwich_coef=None, + par_ratio=None, + residual_attn=False, + cross_residual_attn=False, + macaron=False, + pre_norm=True, + gate_residual=False, + **kwargs + ): + super().__init__() + ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) + attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) + + dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) + + self.dim = dim + self.depth = depth + self.layers = nn.ModuleList([]) + + self.has_pos_emb = position_infused_attn + self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None + self.rotary_pos_emb = always(None) + + assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' + self.rel_pos = None + + self.pre_norm = pre_norm + + self.residual_attn = residual_attn + self.cross_residual_attn = cross_residual_attn + + norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm + norm_class = RMSNorm if use_rmsnorm else norm_class + norm_fn = partial(norm_class, dim) + + norm_fn = nn.Identity if use_rezero else norm_fn + branch_fn = Rezero if use_rezero else None + + if cross_attend and not only_cross: + default_block = ('a', 'c', 'f') + elif cross_attend and only_cross: + default_block = ('c', 'f') + else: + default_block = ('a', 'f') + + if macaron: + default_block = ('f',) + default_block + + if exists(custom_layers): + layer_types = custom_layers + elif exists(par_ratio): + par_depth = depth * len(default_block) + assert 1 < par_ratio <= par_depth, 'par ratio out of range' + default_block = tuple(filter(not_equals('f'), default_block)) + par_attn = par_depth // par_ratio + depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper + par_width = (depth_cut + depth_cut // par_attn) // par_attn + assert len(default_block) <= par_width, 'default block is too large for par_ratio' + par_block = default_block + ('f',) * (par_width - len(default_block)) + par_head = par_block * par_attn + layer_types = par_head + ('f',) * (par_depth - len(par_head)) + elif exists(sandwich_coef): + assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' + layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef + else: + layer_types = default_block * depth + + self.layer_types = layer_types + self.num_attn_layers = len(list(filter(equals('a'), layer_types))) + + for layer_type in self.layer_types: + if layer_type == 'a': + layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) + elif layer_type == 'c': + layer = Attention(dim, heads=heads, **attn_kwargs) + elif layer_type == 'f': + layer = FeedForward(dim, **ff_kwargs) + layer = layer if not macaron else Scale(0.5, layer) + else: + raise Exception(f'invalid layer type {layer_type}') + + if isinstance(layer, Attention) and exists(branch_fn): + layer = branch_fn(layer) + + if gate_residual: + residual_fn = GRUGating(dim) + else: + residual_fn = Residual() + + self.layers.append(nn.ModuleList([ + norm_fn(), + layer, + residual_fn + ])) + + def forward( + self, + x, + context=None, + mask=None, + context_mask=None, + mems=None, + return_hiddens=False + ): + hiddens = [] + intermediates = [] + prev_attn = None + prev_cross_attn = None + + mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers + + for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): + is_last = ind == (len(self.layers) - 1) + + if layer_type == 'a': + hiddens.append(x) + layer_mem = mems.pop(0) + + residual = x + + if self.pre_norm: + x = norm(x) + + if layer_type == 'a': + out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, + prev_attn=prev_attn, mem=layer_mem) + elif layer_type == 'c': + out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) + elif layer_type == 'f': + out = block(x) + + x = residual_fn(out, residual) + + if layer_type in ('a', 'c'): + intermediates.append(inter) + + if layer_type == 'a' and self.residual_attn: + prev_attn = inter.pre_softmax_attn + elif layer_type == 'c' and self.cross_residual_attn: + prev_cross_attn = inter.pre_softmax_attn + + if not self.pre_norm and not is_last: + x = norm(x) + + if return_hiddens: + intermediates = LayerIntermediates( + hiddens=hiddens, + attn_intermediates=intermediates + ) + + return x, intermediates + + return x + + +class Encoder(AttentionLayers): + def __init__(self, **kwargs): + assert 'causal' not in kwargs, 'cannot set causality on encoder' + super().__init__(causal=False, **kwargs) + + + +class TransformerWrapper(nn.Module): + def __init__( + self, + *, + num_tokens, + max_seq_len, + attn_layers, + emb_dim=None, + max_mem_len=0., + emb_dropout=0., + num_memory_tokens=None, + tie_embedding=False, + use_pos_emb=True + ): + super().__init__() + assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' + + dim = attn_layers.dim + emb_dim = default(emb_dim, dim) + + self.max_seq_len = max_seq_len + self.max_mem_len = max_mem_len + self.num_tokens = num_tokens + + self.token_emb = nn.Embedding(num_tokens, emb_dim) + self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( + use_pos_emb and not attn_layers.has_pos_emb) else always(0) + self.emb_dropout = nn.Dropout(emb_dropout) + + self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() + self.attn_layers = attn_layers + self.norm = nn.LayerNorm(dim) + + self.init_() + + self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() + + # memory tokens (like [cls]) from Memory Transformers paper + num_memory_tokens = default(num_memory_tokens, 0) + self.num_memory_tokens = num_memory_tokens + if num_memory_tokens > 0: + self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) + + # let funnel encoder know number of memory tokens, if specified + if hasattr(attn_layers, 'num_memory_tokens'): + attn_layers.num_memory_tokens = num_memory_tokens + + def init_(self): + nn.init.normal_(self.token_emb.weight, std=0.02) + + def forward( + self, + x, + return_embeddings=False, + mask=None, + return_mems=False, + return_attn=False, + mems=None, + **kwargs + ): + b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens + x = self.token_emb(x) + x += self.pos_emb(x) + x = self.emb_dropout(x) + + x = self.project_emb(x) + + if num_mem > 0: + mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) + x = torch.cat((mem, x), dim=1) + + # auto-handle masking after appending memory tokens + if exists(mask): + mask = F.pad(mask, (num_mem, 0), value=True) + + x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) + x = self.norm(x) + + mem, x = x[:, :num_mem], x[:, num_mem:] + + out = self.to_logits(x) if not return_embeddings else x + + if return_mems: + hiddens = intermediates.hiddens + new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens + new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) + return out, new_mems + + if return_attn: + attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) + return out, attn_maps + + return out + diff --git a/scripts/evaluation/__pycache__/style_inference.cpython-39.pyc b/scripts/evaluation/__pycache__/style_inference.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b53c1a7d591686de7b0fdb90b4d88253cd5c363 Binary files /dev/null and b/scripts/evaluation/__pycache__/style_inference.cpython-39.pyc differ diff --git a/scripts/evaluation/ddp_wrapper.py b/scripts/evaluation/ddp_wrapper.py new file mode 100644 index 0000000000000000000000000000000000000000..c3af8d2fa76c35bc47cbd68026eff182e31b0a68 --- /dev/null +++ b/scripts/evaluation/ddp_wrapper.py @@ -0,0 +1,48 @@ +import os, sys +import datetime, time +import argparse, importlib +from pytorch_lightning import seed_everything + +import torch +import torch.distributed as dist +#from inference import run_inference, get_parser + +def setup_dist(local_rank): + if dist.is_initialized(): + return + torch.cuda.set_device(local_rank) + torch.distributed.init_process_group('nccl', init_method='env://') + + +def get_dist_info(): + if dist.is_available(): + initialized = dist.is_initialized() + else: + initialized = False + if initialized: + rank = dist.get_rank() + world_size = dist.get_world_size() + else: + rank = 0 + world_size = 1 + return rank, world_size + + +if __name__ == '__main__': + now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + parser = argparse.ArgumentParser() + parser.add_argument("--module", type=str, help="module name", default="inference") + parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0) + args, unknown = parser.parse_known_args() + inference_api = importlib.import_module(args.module, package=None) + + inference_parser = inference_api.get_parser() + inference_args, unknown = inference_parser.parse_known_args() + + seed_everything(inference_args.seed) + setup_dist(args.local_rank) + torch.backends.cudnn.benchmark = True + rank, gpu_num = get_dist_info() + + print("@CoLVDM Inference [rank%d]: %s"%(rank, now)) + inference_api.run_inference(inference_args, gpu_num, rank) \ No newline at end of file diff --git a/scripts/evaluation/funcs.py b/scripts/evaluation/funcs.py new file mode 100644 index 0000000000000000000000000000000000000000..1b61562daa11c2be675bf4344cc29a831bd11564 --- /dev/null +++ b/scripts/evaluation/funcs.py @@ -0,0 +1,237 @@ +import argparse, os, sys, glob, yaml, math, random +import datetime, time +import numpy as np +from omegaconf import OmegaConf +from tqdm import trange, tqdm +from einops import repeat +from collections import OrderedDict +from decord import VideoReader, cpu + +import torch +import torchvision +sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) +from lvdm.models.samplers.ddim import DDIMSampler + + +def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\ + cfg_scale=1.0, temporal_cfg_scale=None, **kwargs): + ddim_sampler = DDIMSampler(model) + uncond_type = model.uncond_type + batch_size = noise_shape[0] + + ## construct unconditional guidance + if cfg_scale != 1.0: + if isinstance(cond, dict): + c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0] + else: + text_emb = cond + + if uncond_type == "empty_seq": + prompts = batch_size * [""] + uc = model.get_learned_conditioning(prompts) + elif uncond_type == "zero_embed": + uc = torch.zeros_like(text_emb) + else: + raise NotImplementedError + + ## hybrid case + if isinstance(cond, dict): + uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]} + if 'c_adm' in cond: + uc_hybrid.update({'c_adm': cond['c_adm']}) + uc = uc_hybrid + else: + uc = None + + ## sampling + batch_variants = [] + for _ in range(n_samples): + if ddim_sampler is not None: + kwargs.update({"clean_cond": True}) + samples, _ = ddim_sampler.sample(S=ddim_steps, + conditioning=cond, + batch_size=noise_shape[0], + shape=noise_shape[1:], + verbose=False, + unconditional_guidance_scale=cfg_scale, + unconditional_conditioning=uc, + eta=ddim_eta, + temporal_length=noise_shape[2], + conditional_guidance_scale_temporal=temporal_cfg_scale, + x_T=None, + **kwargs + ) + ## reconstruct from latent to pixel space + batch_images = model.decode_first_stage(samples) + batch_variants.append(batch_images) + ## batch, , c, t, h, w + batch_variants = torch.stack(batch_variants, dim=1) + return batch_variants + + +def batch_sliding_interpolation(model, cond, base_videos, base_stride, noise_shape, n_samples=1,\ + ddim_steps=50, ddim_eta=1.0, cfg_scale=1.0, temporal_cfg_scale=None, **kwargs): + ''' + Current implementation has a flaw: the inter-episode keyframe is used as pre-last and cur-first, so keyframe repeated. + For example, cond_frames=[0,4,7], model.temporal_length=8, base_stride=4, then + base frame : 0 4 8 12 16 20 24 28 + interplation: (0~7) (8~15) (16~23) (20~27) + ''' + b,c,t,h,w = noise_shape + base_z0 = model.encode_first_stage(base_videos) + unit_length = model.temporal_length + n_base_frames = base_videos.shape[2] + n_refs = len(model.cond_frames) + sliding_steps = (n_base_frames-1) // (n_refs-1) + sliding_steps = sliding_steps+1 if (n_base_frames-1) % (n_refs-1) > 0 else sliding_steps + + cond_mask = model.cond_mask.to("cuda") + proxy_z0 = torch.zeros((b,c,unit_length,h,w), dtype=torch.float32).to("cuda") + batch_samples = None + last_offset = None + for idx in range(sliding_steps): + base_idx = idx * (n_refs-1) + ## check index overflow + if base_idx+n_refs > n_base_frames: + last_offset = base_idx - (n_base_frames - n_refs) + base_idx = n_base_frames - n_refs + cond_z0 = base_z0[:,:,base_idx:base_idx+n_refs,:,:] + proxy_z0[:,:,model.cond_frames,:,:] = cond_z0 + + if isinstance(cond, dict): + c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0] + episode_idx = idx * unit_length + if last_offset is not None: + episode_idx = episode_idx - last_offset * base_stride + cond_idx = {"c_concat": [c_cat[:,:,episode_idx:episode_idx+unit_length,:,:]], "c_crossattn": [text_emb]} + else: + cond_idx = cond + noise_shape_idx = [b,c,unit_length,h,w] + ## batch, , c, t, h, w + batch_idx = batch_ddim_sampling(model, cond_idx, noise_shape_idx, n_samples, ddim_steps, ddim_eta, cfg_scale, \ + temporal_cfg_scale, mask=cond_mask, x0=proxy_z0, **kwargs) + + if batch_samples is None: + batch_samples = batch_idx + else: + ## b,s,c,t,h,w + if last_offset is None: + batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx], dim=3) + else: + batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx[:,:,:,last_offset * base_stride:,:,:]], dim=3) + + return batch_samples + + +def get_filelist(data_dir, ext='*'): + file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) + file_list.sort() + return file_list + +def get_dirlist(path): + list = [] + if (os.path.exists(path)): + files = os.listdir(path) + for file in files: + m = os.path.join(path,file) + if (os.path.isdir(m)): + list.append(m) + list.sort() + return list + + +def load_model_checkpoint(model, ckpt, adapter_ckpt=None): + def load_checkpoint(model, ckpt, full_strict): + state_dict = torch.load(ckpt, map_location="cpu") + try: + ## deepspeed + new_pl_sd = OrderedDict() + for key in state_dict['module'].keys(): + new_pl_sd[key[16:]]=state_dict['module'][key] + model.load_state_dict(new_pl_sd, strict=full_strict) + except: + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + model.load_state_dict(state_dict, strict=full_strict) + return model + + if adapter_ckpt: + ## main model + load_checkpoint(model, ckpt, full_strict=False) + print('>>> model checkpoint loaded.') + ## adapter + state_dict = torch.load(adapter_ckpt, map_location="cpu") + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + model.adapter.load_state_dict(state_dict, strict=True) + print('>>> adapter checkpoint loaded.') + else: + load_checkpoint(model, ckpt, full_strict=True) + print('>>> model checkpoint loaded.') + return model + + +def load_prompts(prompt_file): + f = open(prompt_file, 'r') + prompt_list = [] + for idx, line in enumerate(f.readlines()): + l = line.strip() + if len(l) != 0: + prompt_list.append(l) + f.close() + return prompt_list + + +def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16): + ''' + Notice about some special cases: + 1. video_frames=-1 means to take all the frames (with fs=1) + 2. when the total video frames is less than required, padding strategy will be used (repreated last frame) + ''' + fps_list = [] + batch_tensor = [] + assert frame_stride > 0, "valid frame stride should be a positive interge!" + for filepath in filepath_list: + padding_num = 0 + vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0]) + fps = vidreader.get_avg_fps() + total_frames = len(vidreader) + max_valid_frames = (total_frames-1) // frame_stride + 1 + if video_frames < 0: + ## all frames are collected: fs=1 is a must + required_frames = total_frames + frame_stride = 1 + else: + required_frames = video_frames + query_frames = min(required_frames, max_valid_frames) + frame_indices = [frame_stride*i for i in range(query_frames)] + + ## [t,h,w,c] -> [c,t,h,w] + frames = vidreader.get_batch(frame_indices) + frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float() + frame_tensor = (frame_tensor / 255. - 0.5) * 2 + if max_valid_frames < required_frames: + padding_num = required_frames - max_valid_frames + frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1) + print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.') + batch_tensor.append(frame_tensor) + sample_fps = int(fps/frame_stride) + fps_list.append(sample_fps) + + return torch.stack(batch_tensor, dim=0) + + +def save_videos(batch_tensors, savedir, filenames, fps=10): + # b,samples,c,t,h,w + n_samples = batch_tensors.shape[1] + for idx, vid_tensor in enumerate(batch_tensors): + video = vid_tensor.detach().cpu() + video = torch.clamp(video.float(), -1., 1.) + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) + savepath = os.path.join(savedir, f"{filenames[idx]}.mp4") + torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) + diff --git a/scripts/evaluation/style_inference.py b/scripts/evaluation/style_inference.py new file mode 100644 index 0000000000000000000000000000000000000000..27687112ded6680dd4ba2d116b5f1061507ab18e --- /dev/null +++ b/scripts/evaluation/style_inference.py @@ -0,0 +1,313 @@ +import argparse, os, sys, glob +import datetime, time +import numpy as np +from omegaconf import OmegaConf +from tqdm import tqdm +from einops import rearrange, repeat +from collections import OrderedDict + +import torch +import torchvision +from torch.utils.data import DataLoader +from pytorch_lightning import seed_everything +## note: decord should be imported after torch +from decord import VideoReader, cpu +from PIL import Image +import json +from torchvision.transforms import transforms +from torchvision.utils import make_grid + +sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) +from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler +from utils.utils import instantiate_from_config +from utils.save_video import tensor_to_mp4 + + +def save_img(img, path, is_tensor=True): + if is_tensor: + img = img.permute(1, 2, 0).cpu().numpy() + img = (img * 127.5 + 127.5).clip(0, 255).astype(np.uint8) + img = Image.fromarray(img) + img.save(path) + +def get_filelist(data_dir, ext='*'): + file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) + file_list.sort() + return file_list + +def load_model_checkpoint(model, ckpt): + state_dict = torch.load(ckpt, map_location="cpu") + if "state_dict" in list(state_dict.keys()): + state_dict = state_dict["state_dict"] + else: + # deepspeed + state_dict = OrderedDict() + for key in state_dict['module'].keys(): + state_dict[key[16:]]=state_dict['module'][key] + + model.load_state_dict(state_dict, strict=False) + print('>>> model checkpoint loaded.') + return model + +def load_data_from_json(data_dir, filename=None, DISABLE_MULTI_REF=False): + # load data from json file + if filename is not None: + json_file = os.path.join(data_dir, filename) + with open(json_file, 'r') as f: + data = json.load(f) + else: + json_file = get_filelist(data_dir, 'json') + assert len(json_file) > 0, "Error: found NO prompt file!" + default_idx = 0 + default_idx = min(default_idx, len(json_file)-1) + if len(json_file) > 1: + print(f"Warning: multiple prompt files exist. The one {os.path.split(json_file[default_idx])[1]} is used.") + ## only use the first one (sorted by name) if multiple exist + with open(json_file[default_idx], 'r') as f: + data = json.load(f) + + n_samples = len(data) + data_list = [] + + style_transforms = torchvision.transforms.Compose([ + torchvision.transforms.Resize(512), + torchvision.transforms.CenterCrop(512), + torchvision.transforms.ToTensor(), + torchvision.transforms.Lambda(lambda x: x * 2. - 1.), + ]) + + for idx in range(n_samples): + prompt = data[idx]['prompt'] + + # load style image + if data[idx]['style_path'] is not None: + style_path = data[idx]['style_path'] + if isinstance(style_path, list) and not DISABLE_MULTI_REF: + style_imgs = [] + for path in style_path: + style_img = Image.open(os.path.join(data_dir, path)).convert('RGB') + style_img_tensor = style_transforms(style_img) + style_imgs.append(style_img_tensor) + style_img_tensor = torch.stack(style_imgs, dim=0) + elif isinstance(style_path, list) and DISABLE_MULTI_REF: + rand_idx = np.random.randint(0, len(style_path)) + style_img = Image.open(os.path.join(data_dir, style_path[rand_idx])).convert('RGB') + style_img_tensor = style_transforms(style_img) + print(f"Warning: multiple style images exist. The one {style_path[rand_idx]} is used.") + else: + style_img = Image.open(os.path.join(data_dir, style_path)).convert('RGB') + style_img_tensor = style_transforms(style_img) + else: + raise ValueError("Error: style image path is None!") + + data_list.append({ + 'prompt': prompt, + 'style': style_img_tensor + }) + + return data_list + +def save_results(prompt, samples, filename, sample_dir, prompt_dir, fps=10, out_type='video'): + ## save prompt + prompt = prompt[0] if isinstance(prompt, list) else prompt + path = os.path.join(prompt_dir, "%s.txt"%filename) + with open(path, 'w') as f: + f.write(f'{prompt}') + f.close() + + ## save video + if out_type == 'image': + n = samples.shape[0] + output = make_grid(samples, nrow=n, normalize=True, range=(-1, 1)) + output_img = Image.fromarray(output.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()) + output_img.save(os.path.join(sample_dir, "%s.jpg"%filename)) + elif out_type == 'video': + ## save video + # b,c,t,h,w + video = samples.detach().cpu() + video = torch.clamp(video.float(), -1., 1.) + n = video.shape[0] + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) + path = os.path.join(sample_dir, "%s.mp4"%filename) + torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) + else: + raise ValueError("Error: output type should be image or video!") + +def style_guided_synthesis(model, prompts, style, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ + unconditional_guidance_scale=1.0, unconditional_guidance_scale_style=None, **kwargs): + ddim_sampler = DDIMSampler(model) if unconditional_guidance_scale_style is None else DDIMStyleSampler(model) + + batch_size = noise_shape[0] + ## get condition embeddings (support single prompt only) + if isinstance(prompts, str): + prompts = [prompts] + cond = model.get_learned_conditioning(prompts) + # cond = repeat(cond, 'b n c -> (b f) n c', f=16) + if unconditional_guidance_scale != 1.0: + prompts = batch_size * [""] + uc = model.get_learned_conditioning(prompts) + # uc = repeat(uc, 'b n c -> (b f) n c', f=16) + else: + uc = None + + if len(style.shape) == 4: + style_cond = model.get_batch_style(style) + append_to_context = model.adapter(style_cond) + else: + bs, n, c, h, w = style.shape + style = rearrange(style, "b n c h w -> (b n) c h w") + style_cond = model.get_batch_style(style) + style_cond = rearrange(style_cond, "(b n) l c -> b (n l ) c", b=bs) + append_to_context = model.adapter(style_cond) + # append_to_context = repeat(append_to_context, 'b n c -> (b f) n c', f=16) + + if hasattr(model.adapter, "scale_predictor"): + scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1)) + else: + scale_scalar = None + + batch_variants = [] + + for _ in range(n_samples): + if ddim_sampler is not None: + samples, _ = ddim_sampler.sample(S=ddim_steps, + conditioning=cond, + batch_size=noise_shape[0], + shape=noise_shape[1:], + verbose=False, + unconditional_guidance_scale=unconditional_guidance_scale, + unconditional_guidance_scale_style=unconditional_guidance_scale_style, + unconditional_conditioning=uc, + eta=ddim_eta, + temporal_length=noise_shape[2], + append_to_context=append_to_context, + scale_scalar=scale_scalar, + **kwargs + ) + ## reconstruct from latent to pixel space + batch_images = model.decode_first_stage(samples) + batch_variants.append(batch_images) + ## variants, batch, c, t, h, w + batch_variants = torch.stack(batch_variants) + return batch_variants.permute(1, 0, 2, 3, 4, 5) + + +def run_inference(args, gpu_num, gpu_no): + ## model config + config = OmegaConf.load(args.base) + model_config = config.pop("model", OmegaConf.create()) + model_config['params']['adapter_config']['params']['scale'] = args.style_weight + print(f"Set adapter scale to {args.style_weight:.2f}") + model = instantiate_from_config(model_config) + model = model.cuda(gpu_no) + assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" + + model = load_model_checkpoint(model, args.ckpt_path) + model.load_pretrained_adapter(args.adapter_ckpt) + if args.out_type == 'video' and args.temporal_ckpt is not None: + model.load_pretrained_temporal(args.temporal_ckpt) + model.eval() + + ## run over data + assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" + ## latent noise shape + h, w = args.height // 8, args.width // 8 + channels = model.channels + frames = model.temporal_length if args.out_type == 'video' else 1 + noise_shape = [args.bs, channels, frames, h, w] + + sample_dir = os.path.join(args.savedir, "samples") + prompt_dir = os.path.join(args.savedir, "prompts") + style_dir = os.path.join(args.savedir, "style") + os.makedirs(sample_dir, exist_ok=True) + os.makedirs(prompt_dir, exist_ok=True) + os.makedirs(style_dir, exist_ok=True) + + ## prompt file setting + assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!" + data_list = load_data_from_json(args.prompt_dir, args.filename, args.disable_multi_ref) + num_samples = len(data_list) + samples_split = num_samples // gpu_num + print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) + #indices = random.choices(list(range(0, num_samples)), k=samples_per_device) + indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1))) + data_list_rank = [data_list[i] for i in indices] + + start = time.time() + for idx, indice in tqdm(enumerate(range(0, len(data_list_rank), args.bs)), desc='Sample Batch'): + prompts = [batch_data['prompt'] for batch_data in data_list_rank[indice:indice+args.bs]] + styles = [batch_data['style'] for batch_data in data_list_rank[indice:indice+args.bs]] + + if isinstance(styles, list): + styles = torch.stack(styles, dim=0).to("cuda") + else: + styles = styles.unsqueeze(0).to("cuda") + + + # if os.path.exists(os.path.join(args.savedir, 'style/{:04d}_style_randk{:d}.png'.format(idx + 1, gpu_no))): + # continue + with torch.cuda.amp.autocast(dtype=torch.float32): + batch_samples = style_guided_synthesis(model, prompts, styles, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ + args.unconditional_guidance_scale, args.unconditional_guidance_scale_style) + if args.out_type == 'image': + batch_samples = batch_samples[:, :, :, 0, :, :] + + if len(styles.shape) == 4: + for nn in range(styles.shape[0]): + filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) + save_img(styles[nn], os.path.join(style_dir, f'{filename}.png')) + else: + for nn in range(styles.shape[0]): + filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) + for i in range(styles.shape[1]): + save_img(styles[nn, i], os.path.join(style_dir, f'{filename}_{i:02d}.png')) + + ## save each example individually + for nn, samples in enumerate(batch_samples): + ## samples : [n_samples,c,t,h,w] + prompt = prompts[nn] + filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) + for i in range(args.n_samples): + save_results(prompt, samples[i:i+1], f"{filename}_{i}", sample_dir, prompt_dir, fps=10, out_type=args.out_type) + + print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") + + +def get_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--savedir", type=str, default=None, help="results saving path") + parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") + parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path") + parser.add_argument("--temporal_ckpt", type=str, default=None, help="temporal checkpoint path") + parser.add_argument("--base", type=str, help="config (yaml) path") + parser.add_argument("--cond_type", default='style', type=str, help="conditon type: {style, depth, style_depth}") + parser.add_argument("--out_type", default='video', type=str, help="output type: {image, video}") + parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") + parser.add_argument("--filename", type=str, default=None, help="a data dir containing videos and prompts") + parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) + parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) + parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) + parser.add_argument("--bs", type=int, default=1, help="batch size for inference") + parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") + parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") + parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") + parser.add_argument("--unconditional_guidance_scale_style", type=float, default=None, help="prompt classifier-free guidance") + parser.add_argument("--seed", type=int, default=0, help="seed for seed_everything") + parser.add_argument("--style_weight", type=float, default=1.0) + parser.add_argument("--disable_multi_ref", action='store_true', help="disable multiple style images") + return parser + + +if __name__ == '__main__': + now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + print("@CoLVDM cond-Inference: %s"%now) + parser = get_parser() + args = parser.parse_args() + + seed_everything(args.seed) + rank, gpu_num = 0, 1 + run_inference(args, gpu_num, rank) \ No newline at end of file diff --git a/scripts/run_infer_image.sh b/scripts/run_infer_image.sh new file mode 100644 index 0000000000000000000000000000000000000000..f6622b873c8d3589011332eac1695d3a24b4caf7 --- /dev/null +++ b/scripts/run_infer_image.sh @@ -0,0 +1,50 @@ +name="style_image_generation" +config="configs/inference_image_512_512.yaml" +ckpt="checkpoints/videocrafter_t2v_320_512/model.ckpt" +adapter_ckpt="checkpoints/stylecrafter/adapter_v1.pth" +prompt_dir="eval_data" +filename="eval_image_gen.json" +res_dir="output" +seed=123 +n_samples=1 + + +use_ddp=0 +# set use_ddp=1 if you want to use multi GPU +# export CUDA_VISIBLE_DEVICES=2 +if [ $use_ddp == 0 ]; then +python3 scripts/evaluation/style_inference.py \ +--out_type 'image' \ +--adapter_ckpt $adapter_ckpt \ +--seed $seed \ +--ckpt_path $ckpt \ +--base $config \ +--savedir $res_dir/$name \ +--n_samples $n_samples \ +--bs 1 --height 512 --width 512 \ +--unconditional_guidance_scale 6.0 \ +--ddim_steps 50 \ +--ddim_eta 1.0 \ +--prompt_dir $prompt_dir \ +--filename $filename +fi + +if [ $use_ddp == 1 ]; then +python3 -m torch.distributed.launch \ +--nproc_per_node=$HOST_GPU_NUM --nnodes=$HOST_NUM --master_addr=$CHIEF_IP --master_port=23466 --node_rank=$INDEX \ +scripts/evaluation/ddp_wrapper.py \ +--module 'style_inference' \ +--out_type 'image' \ +--adapter_ckpt $adapter_ckpt \ +--seed $seed \ +--ckpt_path $ckpt \ +--base $config \ +--savedir $res_dir/$name \ +--n_samples $n_samples \ +--bs 1 --height 512 --width 512 \ +--unconditional_guidance_scale 6.0 \ +--ddim_steps 50 \ +--ddim_eta 1.0 \ +--prompt_dir $prompt_dir \ +--filename $filename +fi \ No newline at end of file diff --git a/scripts/run_infer_video.sh b/scripts/run_infer_video.sh new file mode 100644 index 0000000000000000000000000000000000000000..dd66f71ab6ecbd488d709cea596876bea33b7f76 --- /dev/null +++ b/scripts/run_infer_video.sh @@ -0,0 +1,55 @@ +name="style_video_generation" +config="configs/inference_video_320_512.yaml" +ckpt="checkpoints/videocrafter_t2v_320_512/model.ckpt" +adapter_ckpt="checkpoints/stylecrafter/adapter_v1.pth" +temporal_ckpt="checkpoints/stylecrafter/temporal_v1.pth" +prompt_dir="eval_data" +filename="eval_video_gen.json" +res_dir="output" +seed=123 +n_samples=1 + + +use_ddp=0 +# set use_ddp=1 if you want to use multi GPU +# export CUDA_VISIBLE_DEVICES=0, 1 +if [ $use_ddp == 0 ]; then +python3 scripts/evaluation/style_inference.py \ +--out_type 'video' \ +--adapter_ckpt $adapter_ckpt \ +--temporal_ckpt $temporal_ckpt \ +--seed $seed \ +--ckpt_path $ckpt \ +--base $config \ +--savedir $res_dir/$name \ +--n_samples $n_samples \ +--bs 1 --height 320 --width 512 \ +--unconditional_guidance_scale 15.0 \ +--unconditional_guidance_scale_style 7.5 \ +--ddim_steps 50 \ +--ddim_eta 1.0 \ +--prompt_dir $prompt_dir \ +--filename $filename +fi + +if [ $use_ddp == 1 ]; then +python3 -m torch.distributed.launch \ +--nproc_per_node=$HOST_GPU_NUM --nnodes=$HOST_NUM --master_addr=$CHIEF_IP --master_port=23466 --node_rank=$INDEX \ +scripts/evaluation/ddp_wrapper.py \ +--module 'style_inference' \ +--out_type 'video' \ +--adapter_ckpt $adapter_ckpt \ +--temporal_ckpt $temporal_ckpt \ +--seed $seed \ +--ckpt_path $ckpt \ +--base $config \ +--savedir $res_dir/$name \ +--n_samples $n_samples \ +--bs 1 --height 320 --width 512 \ +--unconditional_guidance_scale 15.0 \ +--unconditional_guidance_scale_style 7.5 \ +--ddim_steps 50 \ +--ddim_eta 1.0 \ +--prompt_dir $prompt_dir \ +--filename $filename +fi \ No newline at end of file diff --git a/utils/__pycache__/save_video.cpython-39.pyc b/utils/__pycache__/save_video.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..136b9dc392038b5225115dcf455c5fd1cbca9061 Binary files /dev/null and b/utils/__pycache__/save_video.cpython-39.pyc differ diff --git a/utils/__pycache__/utils.cpython-39.pyc b/utils/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d13533bfa5b167c31ab684062a92ec8368ae046 Binary files /dev/null and b/utils/__pycache__/utils.cpython-39.pyc differ diff --git a/utils/save_video.py b/utils/save_video.py new file mode 100644 index 0000000000000000000000000000000000000000..4e3d86f405858ff77f3ebd35f23a9ba41fd6d658 --- /dev/null +++ b/utils/save_video.py @@ -0,0 +1,251 @@ +import os +import numpy as np +from tqdm import tqdm +from PIL import Image +from einops import rearrange + +import torch +import torchvision +from torch import Tensor +from torchvision.utils import make_grid +from torchvision.transforms.functional import to_tensor + +def save_video_tensor_to_mp4(video, path, fps): + # b,c,t,h,w + video = video.detach().cpu() + video = torch.clamp(video.float(), -1., 1.) + n = video.shape[0] + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) + torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) + +def save_video_tensor_to_frames(video, dir): + os.makedirs(dir, exist_ok=True) + # b,c,t,h,w + video = video.detach().cpu() + video = torch.clamp(video.float(), -1., 1.) + n = video.shape[0] + assert(n == 1) + video = video[0] # cthw + video = video.permute(1,2,3,0) # thwc + # video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + video = (video + 1.0) / 2.0 * 255 + video = video.to(torch.uint8).numpy() + for i in range(video.shape[0]): + img = video[i] #hwc + image = Image.fromarray(img) + image.save(os.path.join(dir, f'frame{i:03d}.jpg'), q=95) + +def frames_to_mp4(frame_dir,output_path,fps): + def read_first_n_frames(d: os.PathLike, num_frames: int): + if num_frames: + images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))[:num_frames]] + else: + images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))] + images = [to_tensor(x) for x in images] + return torch.stack(images) + videos = read_first_n_frames(frame_dir, num_frames=None) + videos = videos.mul(255).to(torch.uint8).permute(0, 2, 3, 1) + torchvision.io.write_video(output_path, videos, fps=fps, video_codec='h264', options={'crf': '10'}) + + +def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None): + """ + video: torch.Tensor, b,c,t,h,w, 0-1 + if -1~1, enable rescale=True + """ + n = video.shape[0] + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + nrow = int(np.sqrt(n)) if nrow is None else nrow + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video] # [3, grid_h, grid_w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] + grid = torch.clamp(grid.float(), -1., 1.) + if rescale: + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] + #print(f'Save video to {savepath}') + torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) + + +def tensor2videogrids(video, root, filename, fps, rescale=True, clamp=True): + + assert(video.dim() == 5) # b,c,t,h,w + assert(isinstance(video, torch.Tensor)) + + video = video.detach().cpu() + if clamp: + video = torch.clamp(video, -1., 1.) + n = video.shape[0] + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video] # [3, grid_h, grid_w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] + if rescale: + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] + path = os.path.join(root, filename) + # print('Save video ...') + torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) + # print('Finish!') + + +def log_txt_as_img(wh, xc, size=10): + # wh a tuple of (width, height) + # xc a list of captions to plot + b = len(xc) + txts = list() + for bi in range(b): + txt = Image.new("RGB", wh, color="white") + draw = ImageDraw.Draw(txt) + font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) + nc = int(40 * (wh[0] / 256)) + lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) + + try: + draw.text((0, 0), lines, fill="black", font=font) + except UnicodeEncodeError: + print("Cant encode string for logging. Skipping.") + + txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 + txts.append(txt) + txts = np.stack(txts) + txts = torch.tensor(txts) + return txts + + +def log_local(batch_logs, save_dir, filename, save_fps=10, rescale=True): + if batch_logs is None: + return None + """ save images and videos from images dict """ + def save_img_grid(grid, path, rescale): + if rescale: + grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w + grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) + grid = grid.numpy() + grid = (grid * 255).astype(np.uint8) + os.makedirs(os.path.split(path)[0], exist_ok=True) + Image.fromarray(grid).save(path) + for key in batch_logs: + value = batch_logs[key] + if isinstance(value, list) and isinstance(value[0], str): + ## a batch of captions + path = os.path.join(save_dir, "%s-%s.txt"%(key, filename)) + with open(path, 'w') as f: + for i, txt in enumerate(value): + f.write(f'idx={i}, txt={txt}\n') + f.close() + elif isinstance(value, torch.Tensor) and value.dim() == 5: + ## save video grids + video = value # b,c,t,h,w + ## only save grayscale or rgb mode + if video.shape[1] != 1 and video.shape[1] != 3: + continue + n = video.shape[0] + video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w + frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(1)) for framesheet in video] #[3, n*h, 1*w] + grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] + if rescale: + grid = (grid + 1.0) / 2.0 + grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) + path = os.path.join(save_dir, "%s-%s.mp4"%(key, filename)) + torchvision.io.write_video(path, grid, fps=save_fps, video_codec='h264', options={'crf': '10'}) + + ## save frame sheet + img = value + video_frames = rearrange(img, 'b c t h w -> (b t) c h w') + t = img.shape[2] + grid = torchvision.utils.make_grid(video_frames, nrow=t) + path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename)) + #save_img_grid(grid, path, rescale) + elif isinstance(value, torch.Tensor) and value.dim() == 4: + ## save image grids + img = value + ## only save grayscale or rgb mode + if img.shape[1] != 1 and img.shape[1] != 3: + continue + n = img.shape[0] + grid = torchvision.utils.make_grid(img, nrow=1) + path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename)) + save_img_grid(grid, path, rescale) + else: + pass + +def prepare_to_log(batch_logs, max_images=100000, clamp=True): + if batch_logs is None: + return None + # process + for key in batch_logs: + if batch_logs[key] is not None: + N = batch_logs[key].shape[0] if hasattr(batch_logs[key], 'shape') else len(batch_logs[key]) + N = min(N, max_images) + batch_logs[key] = batch_logs[key][:N] + ## in batch_logs: images & caption + if isinstance(batch_logs[key], torch.Tensor): + batch_logs[key] = batch_logs[key].detach().cpu() + if clamp: + try: + batch_logs[key] = torch.clamp(batch_logs[key].float(), -1., 1.) + except RuntimeError: + print("clamp_scalar_cpu not implemented for Half") + return batch_logs + +# ---------------------------------------------------------------------------------------------- + +def fill_with_black_squares(video, desired_len: int) -> Tensor: + if len(video) >= desired_len: + return video + + return torch.cat([ + video, + torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1), + ], dim=0) + +# ---------------------------------------------------------------------------------------------- +def load_num_videos(data_path, num_videos): + # first argument can be either data_path of np array + if isinstance(data_path, str): + videos = np.load(data_path)['arr_0'] # NTHWC + elif isinstance(data_path, np.ndarray): + videos = data_path + else: + raise Exception + + if num_videos is not None: + videos = videos[:num_videos, :, :, :, :] + return videos + +def npz_to_video_grid(data_path, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True): + # videos = torch.tensor(np.load(data_path)['arr_0']).permute(0,1,4,2,3).div_(255).mul_(2) - 1.0 # NTHWC->NTCHW, np int -> torch tensor 0-1 + if isinstance(data_path, str): + videos = load_num_videos(data_path, num_videos) + elif isinstance(data_path, np.ndarray): + videos = data_path + else: + raise Exception + n,t,h,w,c = videos.shape + videos_th = [] + for i in range(n): + video = videos[i, :,:,:,:] + images = [video[j, :,:,:] for j in range(t)] + images = [to_tensor(img) for img in images] + video = torch.stack(images) + videos_th.append(video) + if verbose: + videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW + else: + videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW + + frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W] + if nrow is None: + nrow = int(np.ceil(np.sqrt(n))) + if verbose: + frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')] + else: + frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids] + + if os.path.dirname(out_path) != "": + os.makedirs(os.path.dirname(out_path), exist_ok=True) + frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C] + torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'}) diff --git a/utils/utils.py b/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c73b93e006c4250161b427e4d1fff512ca046f7c --- /dev/null +++ b/utils/utils.py @@ -0,0 +1,77 @@ +import importlib +import numpy as np +import cv2 +import torch +import torch.distributed as dist + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def check_istarget(name, para_list): + """ + name: full name of source para + para_list: partial name of target para + """ + istarget=False + for para in para_list: + if para in name: + return True + return istarget + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def load_npz_from_dir(data_dir): + data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)] + data = np.concatenate(data, axis=0) + return data + + +def load_npz_from_paths(data_paths): + data = [np.load(data_path)['arr_0'] for data_path in data_paths] + data = np.concatenate(data, axis=0) + return data + + +def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None): + h, w = image.shape[:2] + if resize_short_edge is not None: + k = resize_short_edge / min(h, w) + else: + k = max_resolution / (h * w) + k = k**0.5 + h = int(np.round(h * k / 64)) * 64 + w = int(np.round(w * k / 64)) * 64 + image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) + return image + + +def setup_dist(args): + if dist.is_initialized(): + return + torch.cuda.set_device(args.local_rank) + torch.distributed.init_process_group( + 'nccl', + init_method='env://' + ) \ No newline at end of file