Spaces:
Sleeping
Sleeping
import argparse, os, sys, glob | |
import datetime, time | |
import numpy as np | |
from omegaconf import OmegaConf | |
from tqdm import tqdm | |
from einops import rearrange, repeat | |
from collections import OrderedDict | |
import torch | |
import torchvision | |
from torch.utils.data import DataLoader | |
from pytorch_lightning import seed_everything | |
## note: decord should be imported after torch | |
from decord import VideoReader, cpu | |
from PIL import Image | |
import json | |
from torchvision.transforms import transforms | |
from torchvision.utils import make_grid | |
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler | |
from utils.utils import instantiate_from_config | |
from utils.save_video import tensor_to_mp4 | |
def save_img(img, path, is_tensor=True): | |
if is_tensor: | |
img = img.permute(1, 2, 0).cpu().numpy() | |
img = (img * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
img = Image.fromarray(img) | |
img.save(path) | |
def get_filelist(data_dir, ext='*'): | |
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext)) | |
file_list.sort() | |
return file_list | |
def load_model_checkpoint(model, ckpt): | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
else: | |
# deepspeed | |
state_dict = OrderedDict() | |
for key in state_dict['module'].keys(): | |
state_dict[key[16:]]=state_dict['module'][key] | |
model.load_state_dict(state_dict, strict=False) | |
print('>>> model checkpoint loaded.') | |
return model | |
def load_data_from_json(data_dir, filename=None, DISABLE_MULTI_REF=False): | |
# load data from json file | |
if filename is not None: | |
json_file = os.path.join(data_dir, filename) | |
with open(json_file, 'r') as f: | |
data = json.load(f) | |
else: | |
json_file = get_filelist(data_dir, 'json') | |
assert len(json_file) > 0, "Error: found NO prompt file!" | |
default_idx = 0 | |
default_idx = min(default_idx, len(json_file)-1) | |
if len(json_file) > 1: | |
print(f"Warning: multiple prompt files exist. The one {os.path.split(json_file[default_idx])[1]} is used.") | |
## only use the first one (sorted by name) if multiple exist | |
with open(json_file[default_idx], 'r') as f: | |
data = json.load(f) | |
n_samples = len(data) | |
data_list = [] | |
style_transforms = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize(512), | |
torchvision.transforms.CenterCrop(512), | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Lambda(lambda x: x * 2. - 1.), | |
]) | |
for idx in range(n_samples): | |
prompt = data[idx]['prompt'] | |
# load style image | |
if data[idx]['style_path'] is not None: | |
style_path = data[idx]['style_path'] | |
if isinstance(style_path, list) and not DISABLE_MULTI_REF: | |
style_imgs = [] | |
for path in style_path: | |
style_img = Image.open(os.path.join(data_dir, path)).convert('RGB') | |
style_img_tensor = style_transforms(style_img) | |
style_imgs.append(style_img_tensor) | |
style_img_tensor = torch.stack(style_imgs, dim=0) | |
elif isinstance(style_path, list) and DISABLE_MULTI_REF: | |
rand_idx = np.random.randint(0, len(style_path)) | |
style_img = Image.open(os.path.join(data_dir, style_path[rand_idx])).convert('RGB') | |
style_img_tensor = style_transforms(style_img) | |
print(f"Warning: multiple style images exist. The one {style_path[rand_idx]} is used.") | |
else: | |
style_img = Image.open(os.path.join(data_dir, style_path)).convert('RGB') | |
style_img_tensor = style_transforms(style_img) | |
else: | |
raise ValueError("Error: style image path is None!") | |
data_list.append({ | |
'prompt': prompt, | |
'style': style_img_tensor | |
}) | |
return data_list | |
def save_results(prompt, samples, filename, sample_dir, prompt_dir, fps=10, out_type='video'): | |
## save prompt | |
prompt = prompt[0] if isinstance(prompt, list) else prompt | |
path = os.path.join(prompt_dir, "%s.txt"%filename) | |
with open(path, 'w') as f: | |
f.write(f'{prompt}') | |
f.close() | |
## save video | |
if out_type == 'image': | |
n = samples.shape[0] | |
output = make_grid(samples, nrow=n, normalize=True, range=(-1, 1)) | |
output_img = Image.fromarray(output.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()) | |
output_img.save(os.path.join(sample_dir, "%s.jpg"%filename)) | |
elif out_type == 'video': | |
## save video | |
# b,c,t,h,w | |
video = samples.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
path = os.path.join(sample_dir, "%s.mp4"%filename) | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
else: | |
raise ValueError("Error: output type should be image or video!") | |
def style_guided_synthesis(model, prompts, style, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ | |
unconditional_guidance_scale=1.0, unconditional_guidance_scale_style=None, **kwargs): | |
ddim_sampler = DDIMSampler(model) if unconditional_guidance_scale_style is None else DDIMStyleSampler(model) | |
batch_size = noise_shape[0] | |
## get condition embeddings (support single prompt only) | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
cond = model.get_learned_conditioning(prompts) | |
# cond = repeat(cond, 'b n c -> (b f) n c', f=16) | |
if unconditional_guidance_scale != 1.0: | |
prompts = batch_size * [""] | |
uc = model.get_learned_conditioning(prompts) | |
# uc = repeat(uc, 'b n c -> (b f) n c', f=16) | |
else: | |
uc = None | |
if len(style.shape) == 4: | |
style_cond = model.get_batch_style(style) | |
append_to_context = model.adapter(style_cond) | |
else: | |
bs, n, c, h, w = style.shape | |
style = rearrange(style, "b n c h w -> (b n) c h w") | |
style_cond = model.get_batch_style(style) | |
style_cond = rearrange(style_cond, "(b n) l c -> b (n l ) c", b=bs) | |
append_to_context = model.adapter(style_cond) | |
# append_to_context = repeat(append_to_context, 'b n c -> (b f) n c', f=16) | |
if hasattr(model.adapter, "scale_predictor"): | |
scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1)) | |
else: | |
scale_scalar = None | |
batch_variants = [] | |
for _ in range(n_samples): | |
if ddim_sampler is not None: | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=noise_shape[0], | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_guidance_scale_style=unconditional_guidance_scale_style, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
temporal_length=noise_shape[2], | |
append_to_context=append_to_context, | |
scale_scalar=scale_scalar, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage(samples) | |
batch_variants.append(batch_images) | |
## variants, batch, c, t, h, w | |
batch_variants = torch.stack(batch_variants) | |
return batch_variants.permute(1, 0, 2, 3, 4, 5) | |
def run_inference(args, gpu_num, gpu_no): | |
## model config | |
config = OmegaConf.load(args.base) | |
model_config = config.pop("model", OmegaConf.create()) | |
model_config['params']['adapter_config']['params']['scale'] = args.style_weight | |
print(f"Set adapter scale to {args.style_weight:.2f}") | |
model = instantiate_from_config(model_config) | |
model = model.cuda(gpu_no) | |
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" | |
model = load_model_checkpoint(model, args.ckpt_path) | |
model.load_pretrained_adapter(args.adapter_ckpt) | |
if args.out_type == 'video' and args.temporal_ckpt is not None: | |
model.load_pretrained_temporal(args.temporal_ckpt) | |
model.eval() | |
## run over data | |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" | |
## latent noise shape | |
h, w = args.height // 8, args.width // 8 | |
channels = model.channels | |
frames = model.temporal_length if args.out_type == 'video' else 1 | |
noise_shape = [args.bs, channels, frames, h, w] | |
sample_dir = os.path.join(args.savedir, "samples") | |
prompt_dir = os.path.join(args.savedir, "prompts") | |
style_dir = os.path.join(args.savedir, "style") | |
os.makedirs(sample_dir, exist_ok=True) | |
os.makedirs(prompt_dir, exist_ok=True) | |
os.makedirs(style_dir, exist_ok=True) | |
## prompt file setting | |
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!" | |
data_list = load_data_from_json(args.prompt_dir, args.filename, args.disable_multi_ref) | |
num_samples = len(data_list) | |
samples_split = num_samples // gpu_num | |
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) | |
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device) | |
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1))) | |
data_list_rank = [data_list[i] for i in indices] | |
start = time.time() | |
for idx, indice in tqdm(enumerate(range(0, len(data_list_rank), args.bs)), desc='Sample Batch'): | |
prompts = [batch_data['prompt'] for batch_data in data_list_rank[indice:indice+args.bs]] | |
styles = [batch_data['style'] for batch_data in data_list_rank[indice:indice+args.bs]] | |
if isinstance(styles, list): | |
styles = torch.stack(styles, dim=0).to("cuda") | |
else: | |
styles = styles.unsqueeze(0).to("cuda") | |
# if os.path.exists(os.path.join(args.savedir, 'style/{:04d}_style_randk{:d}.png'.format(idx + 1, gpu_no))): | |
# continue | |
with torch.cuda.amp.autocast(dtype=torch.float32): | |
batch_samples = style_guided_synthesis(model, prompts, styles, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ | |
args.unconditional_guidance_scale, args.unconditional_guidance_scale_style) | |
if args.out_type == 'image': | |
batch_samples = batch_samples[:, :, :, 0, :, :] | |
if len(styles.shape) == 4: | |
for nn in range(styles.shape[0]): | |
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) | |
save_img(styles[nn], os.path.join(style_dir, f'{filename}.png')) | |
else: | |
for nn in range(styles.shape[0]): | |
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) | |
for i in range(styles.shape[1]): | |
save_img(styles[nn, i], os.path.join(style_dir, f'{filename}_{i:02d}.png')) | |
## save each example individually | |
for nn, samples in enumerate(batch_samples): | |
## samples : [n_samples,c,t,h,w] | |
prompt = prompts[nn] | |
filename = "%04d"%(idx*args.bs+nn + gpu_no * samples_split) | |
for i in range(args.n_samples): | |
save_results(prompt, samples[i:i+1], f"{filename}_{i}", sample_dir, prompt_dir, fps=10, out_type=args.out_type) | |
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") | |
parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path") | |
parser.add_argument("--temporal_ckpt", type=str, default=None, help="temporal checkpoint path") | |
parser.add_argument("--base", type=str, help="config (yaml) path") | |
parser.add_argument("--cond_type", default='style', type=str, help="conditon type: {style, depth, style_depth}") | |
parser.add_argument("--out_type", default='video', type=str, help="output type: {image, video}") | |
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") | |
parser.add_argument("--filename", type=str, default=None, help="a data dir containing videos and prompts") | |
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
parser.add_argument("--bs", type=int, default=1, help="batch size for inference") | |
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") | |
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") | |
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") | |
parser.add_argument("--unconditional_guidance_scale_style", type=float, default=None, help="prompt classifier-free guidance") | |
parser.add_argument("--seed", type=int, default=0, help="seed for seed_everything") | |
parser.add_argument("--style_weight", type=float, default=1.0) | |
parser.add_argument("--disable_multi_ref", action='store_true', help="disable multiple style images") | |
return parser | |
if __name__ == '__main__': | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
print("@CoLVDM cond-Inference: %s"%now) | |
parser = get_parser() | |
args = parser.parse_args() | |
seed_everything(args.seed) | |
rank, gpu_num = 0, 1 | |
run_inference(args, gpu_num, rank) |