StyleCrafter / app.py
liuhuohuo's picture
init
729d3c5
raw
history blame
9.1 kB
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from torchvision.utils import make_grid
from utils.utils import instantiate_from_config
from collections import OrderedDict
sys.path.insert(0, "scripts/evaluation")
from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler
def load_model_checkpoint(model, ckpt):
state_dict = torch.load(ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
else:
# deepspeed
state_dict = OrderedDict()
for key in state_dict['module'].keys():
state_dict[key[16:]]=state_dict['module'][key]
model.load_state_dict(state_dict, strict=False)
print('>>> model checkpoint loaded.')
return model
def download_model():
REPO_ID = 'VideoCrafter/Text2Video-512'
filename_list = ['model.ckpt']
os.makedirs('./checkpoints/videocrafter_t2v_320_512/', exist_ok=True)
for filename in filename_list:
local_file = os.path.join('./checkpoints/videocrafter_t2v_320_512/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/videocrafter_t2v_320_512/', force_download=True)
REPO_ID = 'liuhuohuo/StyleCrafter'
filename_list = ['adapter_v1.pth', 'temporal_v1.pth']
os.makedirs('./checkpoints/stylecrafter', exist_ok=True)
for filename in filename_list:
local_file = os.path.join('./checkpoints/stylecrafter', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/stylecrafter', force_download=True)
def infer(image, prompt, infer_type='image', seed=123, style_strength=1.0, steps=50):
download_model()
ckpt_path = 'checkpoints/videocrafter_t2v_320_512/model.ckpt'
adapter_ckpt_path = 'checkpoints/stylecrafter/adapter_v1.pth'
temporal_ckpt_path = 'checkpoints/stylecrafter/temporal_v1.pth'
if infer_type == 'image':
config_file='configs/inference_image_512_512.yaml'
h, w = 512 // 8, 512 // 8
unconditional_guidance_scale = 7.5
unconditional_guidance_scale_style = None
else:
config_file='configs/inference_video_320_512.yaml'
h, w = 320 // 8, 512 // 8
unconditional_guidance_scale = 15.0
unconditional_guidance_scale_style = 7.5
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['adapter_config']['params']['scale'] = style_strength
model = instantiate_from_config(model_config)
model = model.cuda()
# load ckpt
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
assert os.path.exists(adapter_ckpt_path), "Error: adapter checkpoint Not Found!"
assert os.path.exists(temporal_ckpt_path), "Error: temporal checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.load_pretrained_adapter(adapter_ckpt_path)
if infer_type == 'video':
model.load_pretrained_temporal(temporal_ckpt_path)
model.eval()
seed_everything(seed)
batch_size=1
channels = model.channels
frames = model.temporal_length if infer_type == 'video' else 1
noise_shape = [batch_size, channels, frames, h, w]
# text cond
cond = model.get_learned_conditioning([prompt])
neg_prompt = batch_size * [""]
uc = model.get_learned_conditioning(neg_prompt)
# style cond
style_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(512),
torchvision.transforms.CenterCrop(512),
torchvision.transforms.ToTensor(),
torchvision.transforms.Lambda(lambda x: x * 2. - 1.),
])
style_img = style_transforms(image).unsqueeze(0).cuda()
style_cond = model.get_batch_style(style_img)
append_to_context = model.adapter(style_cond)
scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1))
ddim_sampler = DDIMSampler(model) if infer_type == 'image' else DDIMStyleSampler(model)
samples, _ = ddim_sampler.sample(S=steps,
conditioning=cond,
batch_size=noise_shape[0],
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_style=unconditional_guidance_scale_style,
unconditional_conditioning=uc,
eta=1.0,
temporal_length=noise_shape[2],
append_to_context=append_to_context,
scale_scalar=scale_scalar
)
samples = model.decode_first_stage(samples)
if infer_type == 'image':
samples = samples[:, :, 0, :, :].detach().cpu()
out_path = "./output.png"
torchvision.utils.save_image(samples, out_path, nrow=1, normalize=True, range=(-1, 1))
elif infer_type == 'video':
samples = samples.detach().cpu()
out_path = "./output.mp4"
video = torch.clamp(samples, -1, 1)
video = video.permute(2, 0, 1, 3, 4) # [T, B, C, H, W]
frame_grids = [torchvision.utils.make_grid(video[t], nrow=1) for t in range(video.shape[0])]
grid = torch.stack(frame_grids, dim=0)
grid = (grid + 1.0) / 2.0
grid = (grid * 255).permute(0, 2, 3, 1).numpy().astype('uint8')
torchvision.io.write_video(out_path, grid, fps=8, video_codec='h264', options={'crf': '10'})
return out_path
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
demo_exaples = [
['eval_data/3d_1.png', 'A bouquet of flowers in a vase.', 'image', 123, 1.0, 50],
['eval_data/craft_1.jpg', 'A modern cityscape with towering skyscrapers.', 'image', 124, 1.0, 50],
['eval_data/digital_art_2.jpeg', 'A lighthouse standing tall on a rocky coast.', 'image', 123, 1.0, 50],
['eval_data/oil_paint_2.jpg', 'A man playing the guitar on a city street.', 'image', 123, 1.0, 50],
['eval_data/craft_2.png', 'City street at night with bright lights and busy traffic.', 'video', 123, 1.0, 50],
['eval_data/anime_1.jpg', 'A field of sunflowers on a sunny day.', 'video', 123, 1.0, 50],
['eval_data/ink_2.jpeg', 'A knight riding a horse through a field.', 'video', 123, 1.0, 50],
['eval_data/oil_paint_2.jpg', 'A street performer playing the guitar.', 'video', 121, 1.0, 50],
['eval_data/icon_1.png', 'A campfire surrounded by tents.', 'video', 123, 1.0, 50],
]
css = """
#input_img {max-height: 512px}
#output_vid {max-width: 512px;}
"""
with gr.Blocks(analytics_enabled=False, css=css) as demo_iface:
gr.HTML(read_content("header.html"))
with gr.Tab(label='Stylized Generation'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
input_style_ref = gr.Image(label="Style Reference",elem_id="input_img")
with gr.Row():
input_prompt = gr.Text(label='Prompts')
with gr.Row():
input_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
input_style_strength = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, label='Style Strength', value=1.0)
with gr.Row():
input_step = gr.Slider(minimum=1, maximum=75, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
input_type = gr.Radio(choices=["image", "video"], label="Generation Type", value="image")
input_end_btn = gr.Button("Generate")
# with gr.Tab(label='Result'):
with gr.Row():
output_result = gr.Video(label="Generated Results",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=demo_exaples,
inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
outputs=[output_result],
fn = infer,
)
input_end_btn.click(inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
outputs=[output_result],
fn = infer
)
demo_iface.queue(max_size=12).launch(show_api=True)