File size: 9,104 Bytes
5af269e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729d3c5
5af269e
 
729d3c5
5af269e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from torchvision.utils import make_grid
from utils.utils import instantiate_from_config

from collections import OrderedDict

sys.path.insert(0, "scripts/evaluation")
from lvdm.models.samplers.ddim import DDIMSampler, DDIMStyleSampler


def load_model_checkpoint(model, ckpt):
    state_dict = torch.load(ckpt, map_location="cpu")
    if "state_dict" in list(state_dict.keys()):
        state_dict = state_dict["state_dict"]
    else:       
        # deepspeed
        state_dict = OrderedDict()
        for key in state_dict['module'].keys():
            state_dict[key[16:]]=state_dict['module'][key]

    model.load_state_dict(state_dict, strict=False)
    print('>>> model checkpoint loaded.')
    return model


def download_model():
    REPO_ID = 'VideoCrafter/Text2Video-512'
    filename_list = ['model.ckpt']
    os.makedirs('./checkpoints/videocrafter_t2v_320_512/', exist_ok=True)
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/videocrafter_t2v_320_512/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/videocrafter_t2v_320_512/', force_download=True)

    REPO_ID = 'liuhuohuo/StyleCrafter'
    filename_list = ['adapter_v1.pth', 'temporal_v1.pth']
    os.makedirs('./checkpoints/stylecrafter', exist_ok=True)
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/stylecrafter', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/stylecrafter', force_download=True)
    

def infer(image, prompt, infer_type='image', seed=123, style_strength=1.0, steps=50):
    download_model()
    ckpt_path = 'checkpoints/videocrafter_t2v_320_512/model.ckpt'
    adapter_ckpt_path = 'checkpoints/stylecrafter/adapter_v1.pth'
    temporal_ckpt_path = 'checkpoints/stylecrafter/temporal_v1.pth'
    if infer_type == 'image':
        config_file='configs/inference_image_512_512.yaml'
        h, w = 512 // 8, 512 // 8
        unconditional_guidance_scale = 7.5
        unconditional_guidance_scale_style = None
    else:
        config_file='configs/inference_video_320_512.yaml'
        h, w = 320 // 8, 512 // 8
        unconditional_guidance_scale = 15.0
        unconditional_guidance_scale_style = 7.5

    config = OmegaConf.load(config_file)
    model_config = config.pop("model", OmegaConf.create())
    model_config['params']['adapter_config']['params']['scale'] = style_strength


    model = instantiate_from_config(model_config)
    model = model.cuda()

    # load ckpt
    assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
    assert os.path.exists(adapter_ckpt_path), "Error: adapter checkpoint Not Found!"
    assert os.path.exists(temporal_ckpt_path), "Error: temporal checkpoint Not Found!"
    model = load_model_checkpoint(model, ckpt_path)
    model.load_pretrained_adapter(adapter_ckpt_path)
    if infer_type == 'video':
        model.load_pretrained_temporal(temporal_ckpt_path)
    model.eval()


    seed_everything(seed)

    batch_size=1
    channels = model.channels
    frames = model.temporal_length if infer_type == 'video' else 1
    noise_shape = [batch_size, channels, frames, h, w]

    # text cond
    cond = model.get_learned_conditioning([prompt])
    neg_prompt = batch_size * [""]
    uc = model.get_learned_conditioning(neg_prompt)

    # style cond
    style_transforms = torchvision.transforms.Compose([
        torchvision.transforms.Resize(512),
        torchvision.transforms.CenterCrop(512),
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Lambda(lambda x: x * 2. - 1.),
    ])

    style_img = style_transforms(image).unsqueeze(0).cuda()
    style_cond = model.get_batch_style(style_img)
    append_to_context = model.adapter(style_cond)

    scale_scalar = model.adapter.scale_predictor(torch.concat([append_to_context, cond], dim=1))

    ddim_sampler = DDIMSampler(model) if infer_type == 'image' else DDIMStyleSampler(model) 
    
    samples, _ = ddim_sampler.sample(S=steps,
                                    conditioning=cond,
                                    batch_size=noise_shape[0],
                                    shape=noise_shape[1:],
                                    verbose=False,
                                    unconditional_guidance_scale=unconditional_guidance_scale,
                                    unconditional_guidance_scale_style=unconditional_guidance_scale_style,
                                    unconditional_conditioning=uc,
                                    eta=1.0,
                                    temporal_length=noise_shape[2],
                                    append_to_context=append_to_context,
                                    scale_scalar=scale_scalar
                                    )
    samples = model.decode_first_stage(samples)  

    if infer_type == 'image':
        samples = samples[:, :, 0, :, :].detach().cpu()
        out_path = "./output.png"
        torchvision.utils.save_image(samples, out_path, nrow=1, normalize=True, range=(-1, 1))

    elif infer_type == 'video':
        samples = samples.detach().cpu()
        out_path = "./output.mp4"
        video = torch.clamp(samples, -1, 1)
        video = video.permute(2, 0, 1, 3, 4) # [T, B, C, H, W]
        frame_grids = [torchvision.utils.make_grid(video[t], nrow=1) for t in range(video.shape[0])]
        grid = torch.stack(frame_grids, dim=0)
        grid = (grid + 1.0) / 2.0
        grid = (grid * 255).permute(0, 2, 3, 1).numpy().astype('uint8')
        torchvision.io.write_video(out_path, grid, fps=8, video_codec='h264', options={'crf': '10'})
        

    return out_path


def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content


demo_exaples = [
    ['eval_data/3d_1.png', 'A bouquet of flowers in a vase.', 'image', 123, 1.0, 50],
    ['eval_data/craft_1.jpg', 'A modern cityscape with towering skyscrapers.', 'image', 124, 1.0, 50],
    ['eval_data/digital_art_2.jpeg', 'A lighthouse standing tall on a rocky coast.', 'image', 123, 1.0, 50],
    ['eval_data/oil_paint_2.jpg', 'A man playing the guitar on a city street.', 'image', 123, 1.0, 50],
    ['eval_data/craft_2.png', 'City street at night with bright lights and busy traffic.', 'video', 123, 1.0, 50],
    ['eval_data/anime_1.jpg', 'A field of sunflowers on a sunny day.', 'video', 123, 1.0, 50],
    ['eval_data/ink_2.jpeg', 'A knight riding a horse through a field.', 'video', 123, 1.0, 50],
    ['eval_data/oil_paint_2.jpg', 'A street performer playing the guitar.', 'video', 121, 1.0, 50],
    ['eval_data/icon_1.png', 'A campfire surrounded by tents.', 'video', 123, 1.0, 50],
]
css = """
#input_img {max-height: 512px} 
#output_vid {max-width: 512px;}
"""

with gr.Blocks(analytics_enabled=False, css=css) as demo_iface:
    gr.HTML(read_content("header.html"))
    
    with gr.Tab(label='Stylized Generation'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        input_style_ref = gr.Image(label="Style Reference",elem_id="input_img")
                    with gr.Row():
                        input_prompt = gr.Text(label='Prompts')
                    with gr.Row():
                        input_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
                        input_style_strength = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, label='Style Strength', value=1.0)
                    with gr.Row():
                        input_step = gr.Slider(minimum=1, maximum=75, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
                        input_type = gr.Radio(choices=["image", "video"], label="Generation Type", value="image")
                    input_end_btn = gr.Button("Generate")
                # with gr.Tab(label='Result'):
                with gr.Row():
                    output_result = gr.Video(label="Generated Results",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=demo_exaples,
                        inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
                        outputs=[output_result],
                        fn = infer,
            )
        input_end_btn.click(inputs=[input_style_ref, input_prompt, input_type, input_seed, input_style_strength, input_step],
                        outputs=[output_result],
                        fn = infer
        )

demo_iface.queue(max_size=12).launch(show_api=True)