Spaces:
Sleeping
Sleeping
File size: 33,540 Bytes
5af269e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
from lvdm.common import (
checkpoint,
exists,
default,
)
from lvdm.basics import (
zero_module,
)
class RelativePosition(nn.Module):
""" https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
nn.init.xavier_uniform_(self.embeddings_table)
def forward(self, length_q, length_k):
device = self.embeddings_table.device
range_vec_q = torch.arange(length_q, device=device)
range_vec_k = torch.arange(length_k, device=device)
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
final_mat = distance_mat_clipped + self.max_relative_position
final_mat = final_mat.long()
embeddings = self.embeddings_table[final_mat]
return embeddings
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
relative_position=False, temporal_length=None, img_cross_attention=False):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.image_cross_attention_scale = 1.0
self.text_context_len = 77
self.img_cross_attention = img_cross_attention
if self.img_cross_attention:
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.relative_position = relative_position
if self.relative_position:
assert(temporal_length is not None)
self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
else:
## only used for spatial attention, while NOT for temporal attention
if XFORMERS_IS_AVAILBLE and temporal_length is None:
self.forward = self.efficient_forward
def forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs):
h = self.heads
q = self.to_q(x)
context = default(context, x)
## considering image token additionally
if context is not None and self.img_cross_attention:
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_img)
v_ip = self.to_v_ip(context_img)
else:
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
if self.relative_position and not is_imgbatch:
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
k2 = self.relative_position_k(len_q, len_k)
sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
sim += sim2
del k
if exists(mask):
## feasible for causal attention mask only
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
sim.masked_fill_(~(mask>0.5), max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
if self.relative_position and not is_imgbatch:
v2 = self.relative_position_v(len_q, len_v)
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
out += out2
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
## considering image token additionally
if context is not None and self.img_cross_attention:
k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
sim_ip = torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
del k_ip
sim_ip = sim_ip.softmax(dim=-1)
out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
out_ip = rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = out + self.image_cross_attention_scale * out_ip
del q
return self.to_out(out)
def efficient_forward(self, x, context=None, mask=None, is_imgbatch=False, **kwargs):
q = self.to_q(x)
context = default(context, x)
## considering image token additionally
if context is not None and self.img_cross_attention:
context, context_img = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_img)
v_ip = self.to_v_ip(context_img)
else:
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
## considering image token additionally
if context is not None and self.img_cross_attention:
k_ip, v_ip = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(k_ip, v_ip),
)
out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
out_ip = (
out_ip.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if context is not None and self.img_cross_attention:
out = out + self.image_cross_attention_scale * out_ip
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False, attention_cls=None, img_cross_attention=False):
super().__init__()
attn_cls = CrossAttention if attention_cls is None else attention_cls
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
img_cross_attention=img_cross_attention)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False):
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
if context is not None:
input_tuple = (x, context, None, emb, scale_scalar, is_imgbatch)
if mask is not None:
forward_mask = partial(self._forward, mask=mask, is_imgbatch=is_imgbatch)
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
if context is not None and mask is not None:
input_tuple = (x, context, mask, emb, scale_scalar, is_imgbatch)
return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
def _forward(self, x, context=None, mask=None, emb=None, scale_scalar=None, is_imgbatch=False):
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x
x = self.attn2(self.norm2(x), context=context, mask=mask, emb=emb, scale_scalar=scale_scalar, is_imgbatch=is_imgbatch) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data in spatial axis.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
use_checkpoint=True, disable_self_attn=False, use_linear=False, img_cross_attention=False):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
if not use_linear:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList([
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
img_cross_attention=img_cross_attention,
disable_self_attn=disable_self_attn,
checkpoint=use_checkpoint) for d in range(depth)
])
if not use_linear:
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None, emb=None, scale_scalar=None):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context, emb=emb, scale_scalar=scale_scalar)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class TemporalTransformer(nn.Module):
"""
Transformer block for image-like data in temporal axis.
First, reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False,
relative_position=False, temporal_length=None):
super().__init__()
self.only_self_att = only_self_att
self.relative_position = relative_position
self.causal_attention = causal_attention
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
if not use_linear:
self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
if relative_position:
assert(temporal_length is not None)
attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
else:
attention_cls = None
if self.causal_attention:
assert(temporal_length is not None)
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
if self.only_self_att:
context_dim = None
self.transformer_blocks = nn.ModuleList([
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
attention_cls=attention_cls,
checkpoint=use_checkpoint) for d in range(depth)
])
if not use_linear:
self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None, is_imgbatch=False, emb=None):
b, c, t, h, w = x.shape
x_in = x
x = self.norm(x)
x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
if self.use_linear:
x = self.proj_in(x)
if is_imgbatch:
maks = torch.eye(t).unsqueeze(0)
maks = maks.to(x.device)
maks = repeat(maks, 'l i j -> (l bhw) i j', bhw=b*h*w)
elif self.causal_attention:
mask = self.mask.to(x.device)
mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
else:
mask = None
if self.only_self_att:
## note: if no context is given, cross-attention defaults to self-attention
for i, block in enumerate(self.transformer_blocks):
x = block(x, mask=mask)
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
else:
x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
for i, block in enumerate(self.transformer_blocks):
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
for j in range(b):
context_j = repeat(
context[j],
't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
## note: causal mask will not applied in cross-attention case
x[j] = block(x[j], context=context_j, is_imgbatch=is_imgbatch)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
if not self.use_linear:
x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
x = self.proj_out(x)
x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
return x + x_in
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
class CrossAttentionProcessor(nn.Module):
def forward(self, attn, x, context=None, mask=None, is_imgbatch=False):
h = attn.heads
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
if attn.relative_position and not is_imgbatch:
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
k2 = attn.relative_position_k(len_q, len_k)
sim2 = einsum('b t d, t s d -> b t s', q, k2) * attn.scale # TODO check
sim += sim2
del q, k
if exists(mask):
raise NotImplementedError
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
if attn.relative_position and not is_imgbatch:
v2 = attn.relative_position_v(len_q, len_v)
out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
out += out2
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return attn.to_out(out)
def efficient_forward(self, attn, x, context=None, mask=None, **kwargs):
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
)
return attn.to_out(out)
def __call__(self, **kwargs):
if XFORMERS_IS_AVAILBLE:
return self.efficient_forward(**kwargs)
else:
return self.forward(**kwargs)
def register_attn_processor(unet):
Attn_processor = {}
def attn_forward(self):
assert hasattr(self, "processor")
def forward(x, context=None, mask=None, **kwargs):
return self.processor(self, x, context, mask, **kwargs)
return forward
def register_recr_in_block(net_, name):
"""
find and register cross attention in the SpatialTransformer block
assert only one cross attention in each block
"""
if net_.__class__.__name__ == 'BasicTransformerBlock':
processor_name = f"{name}.attn2.processor"
net_.attn2.processor = CrossAttentionProcessor()
net_.attn2.forward = attn_forward(net_.attn2)
Attn_processor.update({processor_name: net_.attn2.processor})
print(f"Register Attention Processor in {processor_name} successfully!")
elif hasattr(net_, 'children'):
for sub_name, net in net_.named_children():
register_recr_in_block(net, f"{name}.{sub_name}")
return
def register_recr(net_, name):
# find SpatialTransformer block
if isinstance(net_, SpatialTransformer):
register_recr_in_block(net_, name)
elif hasattr(net_, 'children'):
for sub_name, net in net_.named_children():
register_recr(net, f"{name}.{sub_name}")
for name, net in unet.named_children():
register_recr(net, name)
print("==========================================")
print(f"Totally {len(Attn_processor.keys())} processors are registered successfully! hiahiahia")
return Attn_processor
def set_attn_processor(unet, processor):
def register_recr(net_, name):
if hasattr(net_, "processor"):
net_.processor = processor[f"{name}.processor"]
print(f"Set New Attention Processor in {name}.processor successfully!")
else:
for sub_name, net in net_.named_children():
register_recr(net, f"{name}.{sub_name}")
for name, net in unet.named_children():
register_recr(net, name)
return
def get_attn_processor(unet):
processor_dict = {}
def register_recr(net_, name):
if hasattr(net_, "processor"):
processor_dict[f"{name}.processor"] = net_.processor
else:
for sub_name, net in net_.named_children():
register_recr(net, f"{name}.{sub_name}")
for name, net in unet.named_children():
register_recr(net, name)
return processor_dict
class DualCrossAttnProcessor(nn.Module):
def __init__(self, context_dim, inner_dim, scale=1.0, state_dict=None, use_norm=False, layer_idx=0):
super().__init__()
self.to_k_style = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_style = nn.Linear(context_dim, inner_dim, bias=False)
self.scale = scale
self.layer_idx = layer_idx
if state_dict is not None:
self.to_k_style.load_state_dict(state_dict['k'], strict=True)
self.to_v_style.load_state_dict(state_dict['v'], strict=True)
self.use_norm = use_norm
if use_norm:
self.norm_style = nn.LayerNorm(inner_dim)
else:
self.norm_style = lambda x: x
def forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs):
h = attn.heads
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
if exists(mask):
## feasible for causal attention mask only
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b i j -> (b h) i j', h=h)
sim.masked_fill_(~(mask>0.5), max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
# for another cross attention
if context_style is not None:
k_style = self.to_k_style(context_style)
v_style = self.to_v_style(context_style)
k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style))
sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style)
sim_style = sim_style.softmax(dim=-1)
out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style)
out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h)
out = out + out_style
return attn.to_out(out)
def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, **kwargs):
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
out = (
out.unsqueeze(0)
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
)
if context_style is not None:
k_style = self.to_k_style(context_style)
v_style = self.to_v_style(context_style)
k_style, v_style = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
.contiguous(),
(k_style, v_style),
)
out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None)
out_style = (
out_style.unsqueeze(0)
.reshape(b, attn.heads, out_style.shape[1], attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out_style.shape[1], attn.heads * attn.dim_head)
)
out = out + out_style
return attn.to_out(out)
def __call__(self, attn, x, context=None, mask=None, **kwargs):
# print("Hello! I am working!")
# separate the context
# print(context.shape)
if context.shape[1] == 77:
context_style = None
else:
context_style = context[:, 77:, :]
context = context[:, :77, :]
if XFORMERS_IS_AVAILBLE:
return self.efficient_forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs)
else:
return self.forward(attn, x, context=context, mask=mask, context_style=context_style, **kwargs)
class DualCrossAttnProcessorAS(DualCrossAttnProcessor):
def forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs):
h = attn.heads
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = torch.einsum('b i d, b j d -> b i j', q, k) * attn.scale
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
# for another cross attention
if context_style is not None:
k_style = self.to_k_style(context_style)
v_style = self.to_v_style(context_style)
k_style, v_style = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_style, v_style))
sim_style = torch.einsum('b i d, b j d -> b i j', q, k_style)
sim_style = sim_style.softmax(dim=-1)
out_style = torch.einsum('b i j, b j d -> b i d', sim_style, v_style)
out_style = rearrange(out_style, '(b h) n d -> b n (h d)', h=h)
if scale_scalar is not None:
scale = 1 + scale_scalar[:, self.layer_idx]
scale = scale[:, None]
else:
scale = 1.0
if self.use_norm:
out_style = self.norm_style(out_style)
out = out + scale * out_style * self.scale
return attn.to_out(out)
def efficient_forward(self, attn, x, context=None, mask=None, context_style=None, scale_scalar=None, **kwargs):
q = attn.to_q(x)
context = default(context, x)
k = attn.to_k(context)
v = attn.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
.contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
out = (
out.unsqueeze(0)
.reshape(b, attn.heads, out.shape[1], attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], attn.heads * attn.dim_head)
)
if context_style is not None:
k_style = self.to_k_style(context_style)
v_style = self.to_v_style(context_style)
k_style, v_style = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], attn.heads, attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * attn.heads, t.shape[1], attn.dim_head)
.contiguous(),
(k_style, v_style),
)
out_style = xformers.ops.memory_efficient_attention(q, k_style, v_style, attn_bias=None, op=None)
out_style = (
out_style.unsqueeze(0)
.reshape(b, attn.heads, out_style.shape[1], attn.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out_style.shape[1], attn.heads * attn.dim_head)
)
if scale_scalar is not None:
scale = 1 + scale_scalar[:, self.layer_idx]
scale = scale[:, None]
else:
scale = 1.0
if self.use_norm:
out_style = self.norm_style(out_style)
out = out + scale * out_style * self.scale
return attn.to_out(out)
|