Spaces:
Sleeping
Sleeping
File size: 10,036 Bytes
5af269e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import argparse, os, sys, glob, yaml, math, random
import datetime, time
import numpy as np
from omegaconf import OmegaConf
from tqdm import trange, tqdm
from einops import repeat
from collections import OrderedDict
from decord import VideoReader, cpu
import torch
import torchvision
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
from lvdm.models.samplers.ddim import DDIMSampler
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
ddim_sampler = DDIMSampler(model)
uncond_type = model.uncond_type
batch_size = noise_shape[0]
## construct unconditional guidance
if cfg_scale != 1.0:
if isinstance(cond, dict):
c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0]
else:
text_emb = cond
if uncond_type == "empty_seq":
prompts = batch_size * [""]
uc = model.get_learned_conditioning(prompts)
elif uncond_type == "zero_embed":
uc = torch.zeros_like(text_emb)
else:
raise NotImplementedError
## hybrid case
if isinstance(cond, dict):
uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]}
if 'c_adm' in cond:
uc_hybrid.update({'c_adm': cond['c_adm']})
uc = uc_hybrid
else:
uc = None
## sampling
batch_variants = []
for _ in range(n_samples):
if ddim_sampler is not None:
kwargs.update({"clean_cond": True})
samples, _ = ddim_sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=noise_shape[0],
shape=noise_shape[1:],
verbose=False,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
temporal_length=noise_shape[2],
conditional_guidance_scale_temporal=temporal_cfg_scale,
x_T=None,
**kwargs
)
## reconstruct from latent to pixel space
batch_images = model.decode_first_stage(samples)
batch_variants.append(batch_images)
## batch, <samples>, c, t, h, w
batch_variants = torch.stack(batch_variants, dim=1)
return batch_variants
def batch_sliding_interpolation(model, cond, base_videos, base_stride, noise_shape, n_samples=1,\
ddim_steps=50, ddim_eta=1.0, cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
'''
Current implementation has a flaw: the inter-episode keyframe is used as pre-last and cur-first, so keyframe repeated.
For example, cond_frames=[0,4,7], model.temporal_length=8, base_stride=4, then
base frame : 0 4 8 12 16 20 24 28
interplation: (0~7) (8~15) (16~23) (20~27)
'''
b,c,t,h,w = noise_shape
base_z0 = model.encode_first_stage(base_videos)
unit_length = model.temporal_length
n_base_frames = base_videos.shape[2]
n_refs = len(model.cond_frames)
sliding_steps = (n_base_frames-1) // (n_refs-1)
sliding_steps = sliding_steps+1 if (n_base_frames-1) % (n_refs-1) > 0 else sliding_steps
cond_mask = model.cond_mask.to("cuda")
proxy_z0 = torch.zeros((b,c,unit_length,h,w), dtype=torch.float32).to("cuda")
batch_samples = None
last_offset = None
for idx in range(sliding_steps):
base_idx = idx * (n_refs-1)
## check index overflow
if base_idx+n_refs > n_base_frames:
last_offset = base_idx - (n_base_frames - n_refs)
base_idx = n_base_frames - n_refs
cond_z0 = base_z0[:,:,base_idx:base_idx+n_refs,:,:]
proxy_z0[:,:,model.cond_frames,:,:] = cond_z0
if isinstance(cond, dict):
c_cat, text_emb = cond["c_concat"][0], cond["c_crossattn"][0]
episode_idx = idx * unit_length
if last_offset is not None:
episode_idx = episode_idx - last_offset * base_stride
cond_idx = {"c_concat": [c_cat[:,:,episode_idx:episode_idx+unit_length,:,:]], "c_crossattn": [text_emb]}
else:
cond_idx = cond
noise_shape_idx = [b,c,unit_length,h,w]
## batch, <samples>, c, t, h, w
batch_idx = batch_ddim_sampling(model, cond_idx, noise_shape_idx, n_samples, ddim_steps, ddim_eta, cfg_scale, \
temporal_cfg_scale, mask=cond_mask, x0=proxy_z0, **kwargs)
if batch_samples is None:
batch_samples = batch_idx
else:
## b,s,c,t,h,w
if last_offset is None:
batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx], dim=3)
else:
batch_samples = torch.cat([batch_samples[:,:,:,:-1,:,:], batch_idx[:,:,:,last_offset * base_stride:,:,:]], dim=3)
return batch_samples
def get_filelist(data_dir, ext='*'):
file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
file_list.sort()
return file_list
def get_dirlist(path):
list = []
if (os.path.exists(path)):
files = os.listdir(path)
for file in files:
m = os.path.join(path,file)
if (os.path.isdir(m)):
list.append(m)
list.sort()
return list
def load_model_checkpoint(model, ckpt, adapter_ckpt=None):
def load_checkpoint(model, ckpt, full_strict):
state_dict = torch.load(ckpt, map_location="cpu")
try:
## deepspeed
new_pl_sd = OrderedDict()
for key in state_dict['module'].keys():
new_pl_sd[key[16:]]=state_dict['module'][key]
model.load_state_dict(new_pl_sd, strict=full_strict)
except:
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict, strict=full_strict)
return model
if adapter_ckpt:
## main model
load_checkpoint(model, ckpt, full_strict=False)
print('>>> model checkpoint loaded.')
## adapter
state_dict = torch.load(adapter_ckpt, map_location="cpu")
if "state_dict" in list(state_dict.keys()):
state_dict = state_dict["state_dict"]
model.adapter.load_state_dict(state_dict, strict=True)
print('>>> adapter checkpoint loaded.')
else:
load_checkpoint(model, ckpt, full_strict=True)
print('>>> model checkpoint loaded.')
return model
def load_prompts(prompt_file):
f = open(prompt_file, 'r')
prompt_list = []
for idx, line in enumerate(f.readlines()):
l = line.strip()
if len(l) != 0:
prompt_list.append(l)
f.close()
return prompt_list
def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
'''
Notice about some special cases:
1. video_frames=-1 means to take all the frames (with fs=1)
2. when the total video frames is less than required, padding strategy will be used (repreated last frame)
'''
fps_list = []
batch_tensor = []
assert frame_stride > 0, "valid frame stride should be a positive interge!"
for filepath in filepath_list:
padding_num = 0
vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
fps = vidreader.get_avg_fps()
total_frames = len(vidreader)
max_valid_frames = (total_frames-1) // frame_stride + 1
if video_frames < 0:
## all frames are collected: fs=1 is a must
required_frames = total_frames
frame_stride = 1
else:
required_frames = video_frames
query_frames = min(required_frames, max_valid_frames)
frame_indices = [frame_stride*i for i in range(query_frames)]
## [t,h,w,c] -> [c,t,h,w]
frames = vidreader.get_batch(frame_indices)
frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
frame_tensor = (frame_tensor / 255. - 0.5) * 2
if max_valid_frames < required_frames:
padding_num = required_frames - max_valid_frames
frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
batch_tensor.append(frame_tensor)
sample_fps = int(fps/frame_stride)
fps_list.append(sample_fps)
return torch.stack(batch_tensor, dim=0)
def save_videos(batch_tensors, savedir, filenames, fps=10):
# b,samples,c,t,h,w
n_samples = batch_tensors.shape[1]
for idx, vid_tensor in enumerate(batch_tensors):
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1., 1.)
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|