File size: 21,485 Bytes
5af269e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import numpy as np
from tqdm import tqdm
import torch
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
from lvdm.common import noise_like


class DDIMSampler(object):
    def __init__(self, model, schedule="linear", **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule
        self.counter = 0

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
        alphas_cumprod = self.model.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)

        self.register_buffer('betas', to_torch(self.model.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
        self.use_scale = self.model.use_scale

        if self.use_scale:
            self.register_buffer('scale_arr', to_torch(self.model.scale_arr))
            ddim_scale_arr = self.scale_arr.cpu()[self.ddim_timesteps]
            self.register_buffer('ddim_scale_arr', ddim_scale_arr)
            ddim_scale_arr = np.asarray([self.scale_arr.cpu()[0]] + self.scale_arr.cpu()[self.ddim_timesteps[:-1]].tolist())
            self.register_buffer('ddim_scale_arr_prev', ddim_scale_arr)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
                                                                                   ddim_timesteps=self.ddim_timesteps,
                                                                                   eta=ddim_eta,verbose=verbose)
        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)

    @torch.no_grad()
    def sample(self,
               S,
               batch_size,
               shape,
               conditioning=None,
               callback=None,
               normals_sequence=None,
               img_callback=None,
               quantize_x0=False,
               eta=0.,
               mask=None,
               x0=None,
               temperature=1.,
               noise_dropout=0.,
               score_corrector=None,
               corrector_kwargs=None,
               verbose=True,
               schedule_verbose=False,
               x_T=None,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None,
               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
               **kwargs
               ):
        
        # check condition bs
        if conditioning is not None:
            if isinstance(conditioning, dict):
                try:
                    cbs = conditioning[list(conditioning.keys())[0]].shape[0]
                except:
                    cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]

                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
        
        # make shape
        if len(shape) == 3:
            C, H, W = shape
            size = (batch_size, C, H, W)
        elif len(shape) == 4:
            C, T, H, W = shape
            size = (batch_size, C, T, H, W)
        # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
        
        samples, intermediates = self.ddim_sampling(conditioning, size,
                                                    callback=callback,
                                                    img_callback=img_callback,
                                                    quantize_denoised=quantize_x0,
                                                    mask=mask, x0=x0,
                                                    ddim_use_original_steps=False,
                                                    noise_dropout=noise_dropout,
                                                    temperature=temperature,
                                                    score_corrector=score_corrector,
                                                    corrector_kwargs=corrector_kwargs,
                                                    x_T=x_T,
                                                    log_every_t=log_every_t,
                                                    unconditional_guidance_scale=unconditional_guidance_scale,
                                                    unconditional_conditioning=unconditional_conditioning,
                                                    verbose=verbose,
                                                    **kwargs)
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self, cond, shape,
                      x_T=None, ddim_use_original_steps=False,
                      callback=None, timesteps=None, quantize_denoised=False,
                      mask=None, x0=None, img_callback=None, log_every_t=100,
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                      unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
                      cond_tau=1., target_size=None, start_timesteps=None,
                      **kwargs):
        device = self.model.betas.device        
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T
        
        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]
            
        intermediates = {'x_inter': [img], 'pred_x0': [img]}
        time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
        if verbose:
            iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
        else:
            iterator = time_range

        init_x0 = False
        clean_cond = kwargs.pop("clean_cond", False)
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=device, dtype=torch.long)
            if start_timesteps is not None:
                assert x0 is not None
                if step > start_timesteps*time_range[0]:
                    continue
                elif not init_x0:
                    img = self.model.q_sample(x0, ts) 
                    init_x0 = True

            # use mask to blend noised original latent (img_orig) & new sampled latent (img)
            if mask is not None:
                assert x0 is not None
                if clean_cond:
                    img_orig = x0
                else:
                    img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass? <ddim inversion>
                img = img_orig * mask + (1. - mask) * img # keep original & modify use img
            
            index_clip =  int((1 - cond_tau) * total_steps)
            if index <= index_clip and target_size is not None:
                target_size_ = [target_size[0], target_size[1]//8, target_size[2]//8]
                img = torch.nn.functional.interpolate(
                img,
                size=target_size_,
                mode="nearest",
                )
            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
                                      quantize_denoised=quantize_denoised, temperature=temperature,
                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
                                      corrector_kwargs=corrector_kwargs,
                                      unconditional_guidance_scale=unconditional_guidance_scale,
                                      unconditional_conditioning=unconditional_conditioning,
                                      x0=x0,
                                      **kwargs)
            
            img, pred_x0 = outs
            if callback: callback(i)
            if img_callback: img_callback(pred_x0, i)

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['x_inter'].append(img)
                intermediates['pred_x0'].append(pred_x0)

        return img, intermediates

    @torch.no_grad()
    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                      unconditional_guidance_scale=1., unconditional_conditioning=None,
                      uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
        b, *_, device = *x.shape, x.device
        if x.dim() == 5:
            is_video = True
        else:
            is_video = False

        uncond_kwargs = kwargs.copy()
        uncond_kwargs['append_to_context'] = None

        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
            e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
        else:
            # with unconditional condition
            if isinstance(c, torch.Tensor):
                e_t = self.model.apply_model(x, t, c, **kwargs)
                e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
            elif isinstance(c, dict):
                e_t = self.model.apply_model(x, t, c, **kwargs)
                e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
            else:
                raise NotImplementedError
            # text cfg
            if uc_type is None:
                e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
            else:
                if uc_type == 'cfg_original':
                    e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
                elif uc_type == 'cfg_ours':
                    e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
                else:
                    raise NotImplementedError
            # temporal guidance
            if conditional_guidance_scale_temporal is not None:
                e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
                e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
                e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)

        if score_corrector is not None:
            assert self.model.parameterization == "eps"
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep
        
        if is_video:
            size = (b, 1, 1, 1, 1)
        else:
            size = (b, 1, 1, 1)
        a_t = torch.full(size, alphas[index], device=device)
        a_prev = torch.full(size, alphas_prev[index], device=device)
        sigma_t = torch.full(size, sigmas[index], device=device)
        sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t

        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        
        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        if self.use_scale:
            scale_arr = self.model.scale_arr if use_original_steps else self.ddim_scale_arr
            scale_t = torch.full(size, scale_arr[index], device=device)
            scale_arr_prev = self.model.scale_arr_prev if use_original_steps else self.ddim_scale_arr_prev
            scale_t_prev = torch.full(size, scale_arr_prev[index], device=device)
            pred_x0 /= scale_t 
            x_prev = a_prev.sqrt() * scale_t_prev * pred_x0 + dir_xt + noise
        else:
            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise

        return x_prev, pred_x0


    @torch.no_grad()
    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
        # fast, but does not allow for exact reconstruction
        # t serves as an index to gather the correct alphas
        if use_original_steps:
            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
        else:
            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas

        if noise is None:
            noise = torch.randn_like(x0)

        def extract_into_tensor(a, t, x_shape):
            b, *_ = t.shape
            out = a.gather(-1, t)
            return out.reshape(b, *((1,) * (len(x_shape) - 1)))

        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
                extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)

    @torch.no_grad()
    def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
               use_original_steps=False):

        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
        timesteps = timesteps[:t_start]

        time_range = np.flip(timesteps)
        total_steps = timesteps.shape[0]
        print(f"Running DDIM Sampling with {total_steps} timesteps")

        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
        x_dec = x_latent
        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
                                          unconditional_guidance_scale=unconditional_guidance_scale,
                                          unconditional_conditioning=unconditional_conditioning)
        return x_dec


class DDIMStyleSampler(DDIMSampler):
    @torch.no_grad()
    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
                      unconditional_guidance_scale=1., unconditional_guidance_scale_style=None, unconditional_conditioning=None,
                      uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
        b, *_, device = *x.shape, x.device
        if x.dim() == 5:
            is_video = True
        else:
            is_video = False
        uncond_kwargs = kwargs.copy()
        uncond_kwargs['append_to_context'] = None

        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
            e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
        else:
            # with unconditional condition
            if isinstance(c, torch.Tensor):
                e_t = self.model.apply_model(x, t, c, **kwargs)
                e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
                if unconditional_guidance_scale_style is not None:
                    e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs)
            elif isinstance(c, dict):
                e_t = self.model.apply_model(x, t, c, **kwargs)
                e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **uncond_kwargs)
                if unconditional_guidance_scale_style is not None:
                    e_t_uncond_style = self.model.apply_model(x, t, c, **uncond_kwargs)
            else:
                raise NotImplementedError
            
            if unconditional_guidance_scale_style is None:
                e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
            else:
                e_t = e_t + unconditional_guidance_scale_style * (e_t - e_t_uncond_style) + \
                    unconditional_guidance_scale * (e_t_uncond_style - e_t_uncond)
            
            # temporal guidance
            if conditional_guidance_scale_temporal is not None:
                e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
                e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
                e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)

        if score_corrector is not None:
            assert self.model.parameterization == "eps"
            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep
        
        if is_video:
            size = (b, 1, 1, 1, 1)
        else:
            size = (b, 1, 1, 1)
        a_t = torch.full(size, alphas[index], device=device)
        a_prev = torch.full(size, alphas_prev[index], device=device)
        sigma_t = torch.full(size, sigmas[index], device=device)
        sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        # print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f)
        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
        # direction pointing to x_t
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        # # norm pred_x0
        # p=2
        # s=()
        # pred_x0 = pred_x0 - torch.max(torch.abs(pred_x0))

        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
    
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise

        return x_prev, pred_x0