Spaces:
Running
on
Zero
Running
on
Zero
from diffusers_helper.hf_login import login | |
import os | |
import threading | |
import time | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
import json | |
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) | |
# 添加中英双语翻译字典 | |
translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (max 5 seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error", | |
"processing_error": "Processing error", | |
"network_error": "Network connection is unstable, model download timed out. Please try again later.", | |
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", | |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", | |
"partial_video": "Processing error, but partial video has been generated", | |
"processing_interrupt": "Processing was interrupted, but partial video has been generated" | |
}, | |
"zh": { | |
"title": "FramePack - 图像到视频生成", | |
"upload_image": "上传图像", | |
"prompt": "提示词", | |
"quick_prompts": "快速提示词列表", | |
"start_generation": "开始生成", | |
"stop_generation": "结束生成", | |
"use_teacache": "使用TeaCache", | |
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。", | |
"negative_prompt": "负面提示词", | |
"seed": "随机种子", | |
"video_length": "视频长度(最大5秒)", | |
"latent_window": "潜在窗口大小", | |
"steps": "推理步数", | |
"steps_info": "不建议修改此值。", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "蒸馏CFG比例", | |
"distilled_cfg_info": "不建议修改此值。", | |
"cfg_rescale": "CFG重缩放", | |
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)", | |
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。", | |
"next_latents": "下一批潜变量", | |
"generated_video": "生成的视频", | |
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。", | |
"error_message": "错误信息", | |
"processing_error": "处理过程出错", | |
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。", | |
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。", | |
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。", | |
"partial_video": "处理过程中出现错误,但已生成部分视频", | |
"processing_interrupt": "处理过程中断,但已生成部分视频" | |
} | |
} | |
# 语言切换功能 | |
def get_translation(key, lang="en"): | |
if lang in translations and key in translations[lang]: | |
return translations[lang][key] | |
# 默认返回英文 | |
return translations["en"].get(key, key) | |
# 默认语言设置 | |
current_language = "en" | |
# 切换语言函数 | |
def switch_language(): | |
global current_language | |
current_language = "zh" if current_language == "en" else "en" | |
return current_language | |
import gradio as gr | |
import torch | |
import traceback | |
import einops | |
import safetensors.torch as sf | |
import numpy as np | |
import math | |
# 检查是否在Hugging Face Space环境中 | |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None | |
# 添加变量跟踪GPU可用性 | |
GPU_AVAILABLE = False | |
GPU_INITIALIZED = False | |
last_update_time = time.time() | |
# 如果在Hugging Face Space中,导入spaces模块 | |
if IN_HF_SPACE: | |
try: | |
import spaces | |
print("在Hugging Face Space环境中运行,已导入spaces模块") | |
# 检查GPU可用性 | |
try: | |
GPU_AVAILABLE = torch.cuda.is_available() | |
print(f"GPU available: {GPU_AVAILABLE}") | |
if GPU_AVAILABLE: | |
print(f"GPU device name: {torch.cuda.get_device_name(0)}") | |
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB") | |
# 尝试进行小型GPU操作,确认GPU实际可用 | |
test_tensor = torch.zeros(1, device='cuda') | |
test_tensor = test_tensor + 1 | |
del test_tensor | |
print("成功进行GPU测试操作") | |
else: | |
print("警告: CUDA报告可用,但未检测到GPU设备") | |
except Exception as e: | |
GPU_AVAILABLE = False | |
print(f"检查GPU时出错: {e}") | |
print("将使用CPU模式运行") | |
except ImportError: | |
print("未能导入spaces模块,可能不在Hugging Face Space环境中") | |
GPU_AVAILABLE = torch.cuda.is_available() | |
from PIL import Image | |
from diffusers import AutoencoderKLHunyuanVideo | |
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer | |
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp | |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE | |
from diffusers_helper.thread_utils import AsyncStream, async_run | |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
from transformers import SiglipImageProcessor, SiglipVisionModel | |
from diffusers_helper.clip_vision import hf_clip_vision_encode | |
from diffusers_helper.bucket_tools import find_nearest_bucket | |
outputs_folder = './outputs/' | |
os.makedirs(outputs_folder, exist_ok=True) | |
# 在Spaces环境中,我们延迟所有CUDA操作 | |
if not IN_HF_SPACE: | |
# 仅在非Spaces环境中获取CUDA内存 | |
try: | |
if torch.cuda.is_available(): | |
free_mem_gb = get_cuda_free_memory_gb(gpu) | |
print(f'Free VRAM {free_mem_gb} GB') | |
else: | |
free_mem_gb = 6.0 # 默认值 | |
print("CUDA不可用,使用默认的内存设置") | |
except Exception as e: | |
free_mem_gb = 6.0 # 默认值 | |
print(f"获取CUDA内存时出错: {e},使用默认的内存设置") | |
high_vram = free_mem_gb > 60 | |
print(f'High-VRAM Mode: {high_vram}') | |
else: | |
# 在Spaces环境中使用默认值 | |
print("在Spaces环境中使用默认内存设置") | |
try: | |
if GPU_AVAILABLE: | |
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 # 使用90%的GPU内存 | |
high_vram = free_mem_gb > 10 # 更保守的条件 | |
else: | |
free_mem_gb = 6.0 # 默认值 | |
high_vram = False | |
except Exception as e: | |
print(f"获取GPU内存时出错: {e}") | |
free_mem_gb = 6.0 # 默认值 | |
high_vram = False | |
print(f'GPU内存: {free_mem_gb:.2f} GB, High-VRAM Mode: {high_vram}') | |
# 使用models变量存储全局模型引用 | |
models = {} | |
cpu_fallback_mode = not GPU_AVAILABLE # 如果GPU不可用,使用CPU回退模式 | |
# 使用加载模型的函数 | |
def load_models(): | |
global models, cpu_fallback_mode, GPU_INITIALIZED | |
if GPU_INITIALIZED: | |
print("模型已加载,跳过重复加载") | |
return models | |
print("开始加载模型...") | |
try: | |
# 设置设备,根据GPU可用性确定 | |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu' | |
model_device = 'cpu' # 初始加载到CPU | |
# 降低精度以节省内存 | |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32 | |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32 | |
print(f"使用设备: {device}, 模型精度: {dtype}, Transformer精度: {transformer_dtype}") | |
# 加载模型 | |
try: | |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device) | |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device) | |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device) | |
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device) | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device) | |
print("成功加载所有模型") | |
except Exception as e: | |
print(f"加载模型时出错: {e}") | |
print("尝试降低精度重新加载...") | |
# 降低精度重试 | |
dtype = torch.float32 | |
transformer_dtype = torch.float32 | |
cpu_fallback_mode = True | |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu') | |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu') | |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') | |
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu') | |
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') | |
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu') | |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu') | |
print("使用CPU模式成功加载所有模型") | |
vae.eval() | |
text_encoder.eval() | |
text_encoder_2.eval() | |
image_encoder.eval() | |
transformer.eval() | |
if not high_vram or cpu_fallback_mode: | |
vae.enable_slicing() | |
vae.enable_tiling() | |
transformer.high_quality_fp32_output_for_inference = True | |
print('transformer.high_quality_fp32_output_for_inference = True') | |
# 设置模型精度 | |
if not cpu_fallback_mode: | |
transformer.to(dtype=transformer_dtype) | |
vae.to(dtype=dtype) | |
image_encoder.to(dtype=dtype) | |
text_encoder.to(dtype=dtype) | |
text_encoder_2.to(dtype=dtype) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
text_encoder_2.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
transformer.requires_grad_(False) | |
if torch.cuda.is_available() and not cpu_fallback_mode: | |
try: | |
if not high_vram: | |
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster | |
DynamicSwapInstaller.install_model(transformer, device=device) | |
DynamicSwapInstaller.install_model(text_encoder, device=device) | |
else: | |
text_encoder.to(device) | |
text_encoder_2.to(device) | |
image_encoder.to(device) | |
vae.to(device) | |
transformer.to(device) | |
print(f"成功将模型移动到{device}设备") | |
except Exception as e: | |
print(f"移动模型到{device}时出错: {e}") | |
print("回退到CPU模式") | |
cpu_fallback_mode = True | |
# 保存到全局变量 | |
models = { | |
'text_encoder': text_encoder, | |
'text_encoder_2': text_encoder_2, | |
'tokenizer': tokenizer, | |
'tokenizer_2': tokenizer_2, | |
'vae': vae, | |
'feature_extractor': feature_extractor, | |
'image_encoder': image_encoder, | |
'transformer': transformer | |
} | |
GPU_INITIALIZED = True | |
print(f"模型加载完成,运行模式: {'CPU' if cpu_fallback_mode else 'GPU'}") | |
return models | |
except Exception as e: | |
print(f"加载模型过程中发生错误: {e}") | |
traceback.print_exc() | |
# 记录更详细的错误信息 | |
error_info = { | |
"error": str(e), | |
"traceback": traceback.format_exc(), | |
"cuda_available": torch.cuda.is_available(), | |
"device": "cpu" if cpu_fallback_mode else "cuda", | |
} | |
# 保存错误信息到文件,方便排查 | |
try: | |
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f: | |
f.write(str(error_info)) | |
except: | |
pass | |
# 返回空字典,允许应用继续尝试运行 | |
cpu_fallback_mode = True | |
return {} | |
# 使用Hugging Face Spaces GPU装饰器 | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE: | |
try: | |
def initialize_models(): | |
"""在@spaces.GPU装饰器内初始化模型""" | |
global GPU_INITIALIZED | |
try: | |
result = load_models() | |
GPU_INITIALIZED = True | |
return result | |
except Exception as e: | |
print(f"使用spaces.GPU初始化模型时出错: {e}") | |
traceback.print_exc() | |
global cpu_fallback_mode | |
cpu_fallback_mode = True | |
# 不使用装饰器再次尝试 | |
return load_models() | |
except Exception as e: | |
print(f"创建spaces.GPU装饰器时出错: {e}") | |
# 如果装饰器出错,直接使用非装饰器版本 | |
def initialize_models(): | |
return load_models() | |
# 以下函数内部会延迟获取模型 | |
def get_models(): | |
"""获取模型,如果尚未加载则加载模型""" | |
global models, GPU_INITIALIZED | |
# 添加模型加载锁,防止并发加载 | |
model_loading_key = "__model_loading__" | |
if not models: | |
# 检查是否正在加载模型 | |
if model_loading_key in globals(): | |
print("模型正在加载中,等待...") | |
# 等待模型加载完成 | |
import time | |
start_wait = time.time() | |
while not models and model_loading_key in globals(): | |
time.sleep(0.5) | |
# 超过60秒认为加载失败 | |
if time.time() - start_wait > 60: | |
print("等待模型加载超时") | |
break | |
if models: | |
return models | |
try: | |
# 设置加载标记 | |
globals()[model_loading_key] = True | |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode: | |
try: | |
print("使用@spaces.GPU装饰器加载模型") | |
models = initialize_models() | |
except Exception as e: | |
print(f"使用GPU装饰器加载模型失败: {e}") | |
print("尝试直接加载模型") | |
models = load_models() | |
else: | |
print("直接加载模型") | |
models = load_models() | |
except Exception as e: | |
print(f"加载模型时发生未预期的错误: {e}") | |
traceback.print_exc() | |
# 确保有一个空字典 | |
models = {} | |
finally: | |
# 无论成功与否,都移除加载标记 | |
if model_loading_key in globals(): | |
del globals()[model_loading_key] | |
return models | |
stream = AsyncStream() | |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global last_update_time | |
last_update_time = time.time() | |
# 限制视频长度不超过5秒 | |
total_second_length = min(total_second_length, 5.0) | |
# 获取模型 | |
try: | |
models = get_models() | |
if not models: | |
error_msg = "模型加载失败,请检查日志获取详细信息" | |
print(error_msg) | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
text_encoder = models['text_encoder'] | |
text_encoder_2 = models['text_encoder_2'] | |
tokenizer = models['tokenizer'] | |
tokenizer_2 = models['tokenizer_2'] | |
vae = models['vae'] | |
feature_extractor = models['feature_extractor'] | |
image_encoder = models['image_encoder'] | |
transformer = models['transformer'] | |
except Exception as e: | |
error_msg = f"获取模型时出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# 确定设备 | |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu' | |
print(f"使用设备: {device} 进行推理") | |
# 调整参数以适应CPU模式 | |
if cpu_fallback_mode: | |
print("CPU模式下使用更精简的参数") | |
# 减小处理大小以加快CPU处理 | |
latent_window_size = min(latent_window_size, 5) | |
steps = min(steps, 15) # 减少步数 | |
total_second_length = min(total_second_length, 2.0) # CPU模式下进一步限制视频长度 | |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
total_latent_sections = int(max(round(total_latent_sections), 1)) | |
job_id = generate_timestamp() | |
last_output_filename = None | |
history_pixels = None | |
history_latents = None | |
total_generated_latent_frames = 0 | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
try: | |
# Clean GPU | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
except Exception as e: | |
print(f"卸载模型时出错: {e}") | |
# 继续执行,不中断流程 | |
# Text encoding | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
fake_diffusers_current_device(text_encoder, device) | |
load_model_as_complete(text_encoder_2, target_device=device) | |
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
if cfg == 1: | |
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
else: | |
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
except Exception as e: | |
error_msg = f"文本编码过程出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Processing input image | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
try: | |
H, W, C = input_image.shape | |
height, width = find_nearest_bucket(H, W, resolution=640) | |
# 如果是CPU模式,缩小处理尺寸 | |
if cpu_fallback_mode: | |
height = min(height, 320) | |
width = min(width, 320) | |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
except Exception as e: | |
error_msg = f"图像处理过程出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# VAE encoding | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(vae, target_device=device) | |
start_latent = vae_encode(input_image_pt, vae) | |
except Exception as e: | |
error_msg = f"VAE编码过程出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# CLIP Vision | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
try: | |
if not high_vram and not cpu_fallback_mode: | |
load_model_as_complete(image_encoder, target_device=device) | |
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
except Exception as e: | |
error_msg = f"CLIP Vision编码过程出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Dtype | |
try: | |
llama_vec = llama_vec.to(transformer.dtype) | |
llama_vec_n = llama_vec_n.to(transformer.dtype) | |
clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
except Exception as e: | |
error_msg = f"数据类型转换出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
# Sampling | |
last_update_time = time.time() | |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
rnd = torch.Generator("cpu").manual_seed(seed) | |
num_frames = latent_window_size * 4 - 3 | |
try: | |
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() | |
history_pixels = None | |
total_generated_latent_frames = 0 | |
except Exception as e: | |
error_msg = f"初始化历史状态出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
latent_paddings = reversed(range(total_latent_sections)) | |
if total_latent_sections > 4: | |
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some | |
# items looks better than expanding it when total_latent_sections > 4 | |
# One can try to remove below trick and just | |
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare | |
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] | |
for latent_padding in latent_paddings: | |
last_update_time = time.time() | |
is_last_section = latent_padding == 0 | |
latent_padding_size = latent_padding * latent_window_size | |
if stream.input_queue.top() == 'end': | |
# 确保在结束时保存当前的视频 | |
if history_pixels is not None and total_generated_latent_frames > 0: | |
try: | |
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4') | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"保存最终视频时出错: {e}") | |
stream.output_queue.push(('end', None)) | |
return | |
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') | |
try: | |
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) | |
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) | |
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) | |
clean_latents_pre = start_latent.to(history_latents) | |
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) | |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) | |
except Exception as e: | |
error_msg = f"准备采样数据时出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
# 尝试继续下一轮迭代而不是完全终止 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models() | |
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation) | |
except Exception as e: | |
print(f"移动transformer到GPU时出错: {e}") | |
# 继续执行,可能影响性能但不必终止 | |
if use_teacache and not cpu_fallback_mode: | |
try: | |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
except Exception as e: | |
print(f"初始化teacache时出错: {e}") | |
# 禁用teacache并继续 | |
transformer.initialize_teacache(enable_teacache=False) | |
else: | |
transformer.initialize_teacache(enable_teacache=False) | |
def callback(d): | |
global last_update_time | |
last_update_time = time.time() | |
try: | |
# 首先检查是否有停止信号 | |
print(f"【调试】回调函数: 步骤 {d['i']}, 检查是否有停止信号") | |
try: | |
queue_top = stream.input_queue.top() | |
print(f"【调试】回调函数: 队列顶部信号 = {queue_top}") | |
if queue_top == 'end': | |
print("【调试】回调函数: 检测到停止信号,准备中断...") | |
try: | |
stream.output_queue.push(('end', None)) | |
print("【调试】回调函数: 成功向输出队列推送end信号") | |
except Exception as e: | |
print(f"【调试】回调函数: 向输出队列推送end信号失败: {e}") | |
print("【调试】回调函数: 即将抛出KeyboardInterrupt异常") | |
raise KeyboardInterrupt('用户主动结束任务') | |
except Exception as e: | |
print(f"【调试】回调函数: 检查队列顶部信号出错: {e}") | |
preview = d['denoised'] | |
preview = vae_decode_fake(preview) | |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
current_step = d['i'] + 1 | |
percentage = int(100.0 * current_step / steps) | |
hint = f'Sampling {current_step}/{steps}' | |
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' | |
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
except KeyboardInterrupt as e: | |
# 捕获并重新抛出中断异常,确保它能传播到采样函数 | |
print(f"【调试】回调函数: 捕获到KeyboardInterrupt: {e}") | |
print("【调试】回调函数: 重新抛出中断异常,确保传播到采样函数") | |
raise | |
except Exception as e: | |
print(f"【调试】回调函数中出错: {e}") | |
# 不中断采样过程 | |
print(f"【调试】回调函数: 步骤 {d['i']} 完成") | |
return | |
try: | |
sampling_start_time = time.time() | |
print(f"开始采样,设备: {device}, 数据类型: {transformer.dtype}, 使用TeaCache: {use_teacache and not cpu_fallback_mode}") | |
try: | |
print("【调试】开始sample_hunyuan采样流程") | |
generated_latents = sample_hunyuan( | |
transformer=transformer, | |
sampler='unipc', | |
width=width, | |
height=height, | |
frames=num_frames, | |
real_guidance_scale=cfg, | |
distilled_guidance_scale=gs, | |
guidance_rescale=rs, | |
# shift=3.0, | |
num_inference_steps=steps, | |
generator=rnd, | |
prompt_embeds=llama_vec, | |
prompt_embeds_mask=llama_attention_mask, | |
prompt_poolers=clip_l_pooler, | |
negative_prompt_embeds=llama_vec_n, | |
negative_prompt_embeds_mask=llama_attention_mask_n, | |
negative_prompt_poolers=clip_l_pooler_n, | |
device=device, | |
dtype=transformer.dtype, | |
image_embeddings=image_encoder_last_hidden_state, | |
latent_indices=latent_indices, | |
clean_latents=clean_latents, | |
clean_latent_indices=clean_latent_indices, | |
clean_latents_2x=clean_latents_2x, | |
clean_latent_2x_indices=clean_latent_2x_indices, | |
clean_latents_4x=clean_latents_4x, | |
clean_latent_4x_indices=clean_latent_4x_indices, | |
callback=callback, | |
) | |
print(f"【调试】采样完成,用时: {time.time() - sampling_start_time:.2f}秒") | |
except KeyboardInterrupt as e: | |
# 用户主动中断 | |
print(f"【调试】捕获到KeyboardInterrupt: {e}") | |
print("【调试】用户主动中断采样过程,处理中断逻辑") | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
print(f"【调试】已有部分生成视频: {last_output_filename},返回此视频") | |
stream.output_queue.push(('file', last_output_filename)) | |
error_msg = "用户中断生成过程,但已生成部分视频" | |
else: | |
print("【调试】没有部分生成视频,返回中断消息") | |
error_msg = "用户中断生成过程,未生成视频" | |
print(f"【调试】推送错误消息: {error_msg}") | |
stream.output_queue.push(('error', error_msg)) | |
print("【调试】推送end信号") | |
stream.output_queue.push(('end', None)) | |
print("【调试】中断处理完成,返回") | |
return | |
except Exception as e: | |
print(f"采样过程中出错: {e}") | |
traceback.print_exc() | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
# 创建错误信息 | |
error_msg = f"采样过程中出错,但已返回部分生成的视频: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
else: | |
# 如果没有生成的视频,返回错误信息 | |
error_msg = f"采样过程中出错,无法生成视频: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
try: | |
if is_last_section: | |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) | |
total_generated_latent_frames += int(generated_latents.shape[2]) | |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) | |
except Exception as e: | |
error_msg = f"处理生成的潜变量时出错: {e}" | |
print(error_msg) | |
traceback.print_exc() | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
stream.output_queue.push(('error', error_msg)) | |
stream.output_queue.push(('end', None)) | |
return | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8) | |
load_model_as_complete(vae, target_device=device) | |
except Exception as e: | |
print(f"管理模型内存时出错: {e}") | |
# 继续执行 | |
try: | |
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] | |
except Exception as e: | |
error_msg = f"处理历史潜变量时出错: {e}" | |
print(error_msg) | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
continue | |
try: | |
vae_start_time = time.time() | |
print(f"开始VAE解码,潜变量形状: {real_history_latents.shape}") | |
if history_pixels is None: | |
history_pixels = vae_decode(real_history_latents, vae).cpu() | |
else: | |
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) | |
overlapped_frames = latent_window_size * 4 - 3 | |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() | |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) | |
print(f"VAE解码完成,用时: {time.time() - vae_start_time:.2f}秒") | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
unload_complete_models() | |
except Exception as e: | |
print(f"卸载模型时出错: {e}") | |
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
save_start_time = time.time() | |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
print(f"保存视频完成,用时: {time.time() - save_start_time:.2f}秒") | |
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
last_output_filename = output_filename | |
stream.output_queue.push(('file', output_filename)) | |
except Exception as e: | |
print(f"视频解码或保存过程中出错: {e}") | |
traceback.print_exc() | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
stream.output_queue.push(('file', last_output_filename)) | |
# 记录错误信息 | |
error_msg = f"视频解码或保存过程中出错: {e}" | |
stream.output_queue.push(('error', error_msg)) | |
# 尝试继续下一次迭代 | |
continue | |
if is_last_section: | |
break | |
except Exception as e: | |
print(f"【调试】处理过程中出现错误: {e}, 类型: {type(e)}") | |
print(f"【调试】错误详情:") | |
traceback.print_exc() | |
# 检查是否是中断类型异常 | |
if isinstance(e, KeyboardInterrupt): | |
print("【调试】捕获到外层KeyboardInterrupt异常") | |
if not high_vram and not cpu_fallback_mode: | |
try: | |
print("【调试】尝试卸载模型以释放资源") | |
unload_complete_models( | |
text_encoder, text_encoder_2, image_encoder, vae, transformer | |
) | |
print("【调试】模型卸载成功") | |
except Exception as unload_error: | |
print(f"【调试】卸载模型时出错: {unload_error}") | |
pass | |
# 如果已经有生成的视频,返回最后生成的视频 | |
if last_output_filename: | |
print(f"【调试】外层异常处理: 返回已生成的部分视频 {last_output_filename}") | |
stream.output_queue.push(('file', last_output_filename)) | |
else: | |
print("【调试】外层异常处理: 未找到已生成的视频") | |
# 返回错误信息 | |
error_msg = f"处理过程中出现错误: {e}" | |
print(f"【调试】外层异常处理: 推送错误信息: {error_msg}") | |
stream.output_queue.push(('error', error_msg)) | |
# 确保总是返回end信号 | |
print("【调试】工作函数结束,推送end信号") | |
stream.output_queue.push(('end', None)) | |
return | |
# 使用Hugging Face Spaces GPU装饰器处理进程函数 | |
if IN_HF_SPACE and 'spaces' in globals(): | |
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
# 初始化UI状态 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
# 异步启动worker | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
# 持续检查worker的输出 | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
# 清除错误显示,确保文件成功时不显示错误 | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
# 更新进度时不改变错误信息,并确保停止按钮可交互 | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'error': | |
error_message = data | |
print(f"收到错误消息: {error_message}") | |
# 不立即显示,等待end信号 | |
if flag == 'end': | |
# 如果有最后的视频文件,确保返回 | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
# 如果有错误消息,创建友好的错误显示 | |
if error_message: | |
error_html = create_error_html(error_message) | |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
# 确保成功完成时不显示任何错误 | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"处理输出时出错: {e}") | |
# 检查是否长时间没有更新 | |
current_time = time.time() | |
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 | |
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") | |
# 如果有部分生成的视频,返回 | |
if prev_output_filename: | |
error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True) | |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
error_html = create_error_html(f"处理超时: {e}", is_timeout=True) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"启动处理时出错: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
error_html = create_error_html(error_msg) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
process = process_with_gpu | |
else: | |
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): | |
global stream | |
assert input_image is not None, 'No input image!' | |
# 初始化UI状态 | |
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
try: | |
stream = AsyncStream() | |
# 异步启动worker | |
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) | |
output_filename = None | |
prev_output_filename = None | |
error_message = None | |
# 持续检查worker的输出 | |
while True: | |
try: | |
flag, data = stream.output_queue.next() | |
if flag == 'file': | |
output_filename = data | |
prev_output_filename = output_filename | |
# 清除错误显示,确保文件成功时不显示错误 | |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'progress': | |
preview, desc, html = data | |
# 更新进度时不改变错误信息,并确保停止按钮可交互 | |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
if flag == 'error': | |
error_message = data | |
print(f"收到错误消息: {error_message}") | |
# 不立即显示,等待end信号 | |
if flag == 'end': | |
# 如果有最后的视频文件,确保返回 | |
if output_filename is None and prev_output_filename is not None: | |
output_filename = prev_output_filename | |
# 如果有错误消息,创建友好的错误显示 | |
if error_message: | |
error_html = create_error_html(error_message) | |
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
# 确保成功完成时不显示任何错误 | |
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"处理输出时出错: {e}") | |
# 检查是否长时间没有更新 | |
current_time = time.time() | |
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了 | |
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新") | |
# 如果有部分生成的视频,返回 | |
if prev_output_filename: | |
error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True) | |
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
else: | |
error_html = create_error_html(f"处理超时: {e}", is_timeout=True) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
break | |
except Exception as e: | |
print(f"启动处理时出错: {e}") | |
traceback.print_exc() | |
error_msg = str(e) | |
error_html = create_error_html(error_msg) | |
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False) | |
def end_process(): | |
"""停止生成过程函数 - 通过在队列中推送'end'信号来中断生成""" | |
print("【调试】用户点击了停止按钮,发送停止信号...") | |
# 确保stream已初始化 | |
if 'stream' in globals() and stream is not None: | |
# 在推送前检查队列状态 | |
try: | |
current_top = stream.input_queue.top() | |
print(f"【调试】当前队列顶部信号: {current_top}") | |
except Exception as e: | |
print(f"【调试】检查队列状态出错: {e}") | |
# 推送end信号 | |
try: | |
stream.input_queue.push('end') | |
print("【调试】成功推送end信号到队列") | |
# 验证信号是否成功推送 | |
try: | |
current_top_after = stream.input_queue.top() | |
print(f"【调试】推送后队列顶部信号: {current_top_after}") | |
except Exception as e: | |
print(f"【调试】验证推送后队列状态出错: {e}") | |
except Exception as e: | |
print(f"【调试】推送end信号到队列失败: {e}") | |
else: | |
print("【调试】警告: stream未初始化,无法发送停止信号") | |
return None | |
quick_prompts = [ | |
'The girl dances gracefully, with clear movements, full of charm.', | |
'A character doing some simple body movements.', | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
# 创建一个自定义CSS,增加响应式布局支持 | |
def make_custom_css(): | |
progress_bar_css = make_progress_bar_css() | |
responsive_css = """ | |
/* 基础响应式设置 */ | |
#app-container { | |
max-width: 100%; | |
margin: 0 auto; | |
} | |
/* 语言切换按钮样式 */ | |
#language-toggle { | |
position: fixed; | |
top: 10px; | |
right: 10px; | |
z-index: 1000; | |
background-color: rgba(0, 0, 0, 0.7); | |
color: white; | |
border: none; | |
border-radius: 4px; | |
padding: 5px 10px; | |
cursor: pointer; | |
font-size: 14px; | |
} | |
/* 页面标题样式 */ | |
h1 { | |
font-size: 2rem; | |
text-align: center; | |
margin-bottom: 1rem; | |
} | |
/* 按钮样式 */ | |
.start-btn, .stop-btn { | |
min-height: 45px; | |
font-size: 1rem; | |
} | |
/* 移动设备样式 - 小屏幕 */ | |
@media (max-width: 768px) { | |
h1 { | |
font-size: 1.5rem; | |
margin-bottom: 0.5rem; | |
} | |
/* 单列布局 */ | |
.mobile-full-width { | |
flex-direction: column !important; | |
} | |
.mobile-full-width > .gr-block { | |
min-width: 100% !important; | |
flex-grow: 1; | |
} | |
/* 调整视频大小 */ | |
.video-container { | |
height: auto !important; | |
} | |
/* 调整按钮大小 */ | |
.button-container button { | |
min-height: 50px; | |
font-size: 1rem; | |
touch-action: manipulation; | |
} | |
/* 调整滑块 */ | |
.slider-container input[type="range"] { | |
height: 30px; | |
} | |
} | |
/* 平板设备样式 */ | |
@media (min-width: 769px) and (max-width: 1024px) { | |
.tablet-adjust { | |
width: 48% !important; | |
} | |
} | |
/* 黑暗模式支持 */ | |
@media (prefers-color-scheme: dark) { | |
.dark-mode-text { | |
color: #f0f0f0; | |
} | |
.dark-mode-bg { | |
background-color: #2a2a2a; | |
} | |
} | |
/* 增强可访问性 */ | |
button, input, select, textarea { | |
font-size: 16px; /* 防止iOS缩放 */ | |
} | |
/* 触摸优化 */ | |
button, .interactive-element { | |
min-height: 44px; | |
min-width: 44px; | |
} | |
/* 提高对比度 */ | |
.high-contrast { | |
color: #fff; | |
background-color: #000; | |
} | |
/* 进度条样式增强 */ | |
.progress-container { | |
margin-top: 10px; | |
margin-bottom: 10px; | |
} | |
/* 错误消息样式 */ | |
#error-message { | |
color: #ff4444; | |
font-weight: bold; | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
} | |
/* 确保错误容器正确显示 */ | |
.error-message { | |
background-color: rgba(255, 0, 0, 0.1); | |
padding: 10px; | |
border-radius: 4px; | |
margin-top: 10px; | |
border: 1px solid #ffcccc; | |
} | |
/* 处理多语言错误消息 */ | |
.error-msg-en, .error-msg-zh { | |
font-weight: bold; | |
} | |
/* 错误图标 */ | |
.error-icon { | |
color: #ff4444; | |
font-size: 18px; | |
margin-right: 8px; | |
} | |
/* 确保空错误消息不显示背景和边框 */ | |
#error-message:empty { | |
background-color: transparent; | |
border: none; | |
padding: 0; | |
margin: 0; | |
} | |
/* 修复Gradio默认错误显示 */ | |
.error { | |
display: none !important; | |
} | |
""" | |
# 合并CSS | |
combined_css = progress_bar_css + responsive_css | |
return combined_css | |
css = make_custom_css() | |
block = gr.Blocks(css=css).queue() | |
with block: | |
# 添加语言切换功能 | |
gr.HTML(""" | |
<div id="app-container"> | |
<button id="language-toggle" onclick="toggleLanguage()">中文/English</button> | |
</div> | |
<script> | |
// 全局变量,存储当前语言 | |
window.currentLang = "en"; | |
// 语言切换函数 | |
function toggleLanguage() { | |
window.currentLang = window.currentLang === "en" ? "zh" : "en"; | |
// 获取所有带有data-i18n属性的元素 | |
const elements = document.querySelectorAll('[data-i18n]'); | |
// 遍历并切换语言 | |
elements.forEach(el => { | |
const key = el.getAttribute('data-i18n'); | |
const translations = { | |
"en": { | |
"title": "FramePack - Image to Video Generation", | |
"upload_image": "Upload Image", | |
"prompt": "Prompt", | |
"quick_prompts": "Quick Prompts", | |
"start_generation": "Generate", | |
"stop_generation": "Stop", | |
"use_teacache": "Use TeaCache", | |
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.", | |
"negative_prompt": "Negative Prompt", | |
"seed": "Seed", | |
"video_length": "Video Length (max 5 seconds)", | |
"latent_window": "Latent Window Size", | |
"steps": "Inference Steps", | |
"steps_info": "Changing this value is not recommended.", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "Distilled CFG Scale", | |
"distilled_cfg_info": "Changing this value is not recommended.", | |
"cfg_rescale": "CFG Rescale", | |
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)", | |
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.", | |
"next_latents": "Next Latents", | |
"generated_video": "Generated Video", | |
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.", | |
"error_message": "Error", | |
"processing_error": "Processing error", | |
"network_error": "Network connection is unstable, model download timed out. Please try again later.", | |
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.", | |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.", | |
"partial_video": "Processing error, but partial video has been generated", | |
"processing_interrupt": "Processing was interrupted, but partial video has been generated" | |
}, | |
"zh": { | |
"title": "FramePack - 图像到视频生成", | |
"upload_image": "上传图像", | |
"prompt": "提示词", | |
"quick_prompts": "快速提示词列表", | |
"start_generation": "开始生成", | |
"stop_generation": "结束生成", | |
"use_teacache": "使用TeaCache", | |
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。", | |
"negative_prompt": "负面提示词", | |
"seed": "随机种子", | |
"video_length": "视频长度(最大5秒)", | |
"latent_window": "潜在窗口大小", | |
"steps": "推理步数", | |
"steps_info": "不建议修改此值。", | |
"cfg_scale": "CFG Scale", | |
"distilled_cfg": "蒸馏CFG比例", | |
"distilled_cfg_info": "不建议修改此值。", | |
"cfg_rescale": "CFG重缩放", | |
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)", | |
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。", | |
"next_latents": "下一批潜变量", | |
"generated_video": "生成的视频", | |
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。", | |
"error_message": "错误信息", | |
"processing_error": "处理过程出错", | |
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。", | |
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。", | |
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。", | |
"partial_video": "处理过程中出现错误,但已生成部分视频", | |
"processing_interrupt": "处理过程中断,但已生成部分视频" | |
} | |
}; | |
if (translations[window.currentLang] && translations[window.currentLang][key]) { | |
// 根据元素类型设置文本 | |
if (el.tagName === 'BUTTON') { | |
el.textContent = translations[window.currentLang][key]; | |
} else if (el.tagName === 'LABEL') { | |
el.textContent = translations[window.currentLang][key]; | |
} else { | |
el.innerHTML = translations[window.currentLang][key]; | |
} | |
} | |
}); | |
// 更新页面上其他元素 | |
document.querySelectorAll('.bilingual-label').forEach(el => { | |
const enText = el.getAttribute('data-en'); | |
const zhText = el.getAttribute('data-zh'); | |
el.textContent = window.currentLang === 'en' ? enText : zhText; | |
}); | |
// 处理错误消息容器 | |
document.querySelectorAll('[data-lang]').forEach(el => { | |
el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none'; | |
}); | |
} | |
// 页面加载后初始化 | |
document.addEventListener('DOMContentLoaded', function() { | |
// 添加data-i18n属性到需要国际化的元素 | |
setTimeout(() => { | |
// 给所有标签添加i18n属性 | |
const labelMap = { | |
"Upload Image": "upload_image", | |
"上传图像": "upload_image", | |
"Prompt": "prompt", | |
"提示词": "prompt", | |
"Quick Prompts": "quick_prompts", | |
"快速提示词列表": "quick_prompts", | |
"Generate": "start_generation", | |
"开始生成": "start_generation", | |
"Stop": "stop_generation", | |
"结束生成": "stop_generation", | |
// 添加其他标签映射... | |
}; | |
// 处理标签 | |
document.querySelectorAll('label, span, button').forEach(el => { | |
const text = el.textContent.trim(); | |
if (labelMap[text]) { | |
el.setAttribute('data-i18n', labelMap[text]); | |
} | |
}); | |
// 添加特定元素的i18n属性 | |
const titleEl = document.querySelector('h1'); | |
if (titleEl) titleEl.setAttribute('data-i18n', 'title'); | |
// 初始化标签语言 | |
toggleLanguage(); | |
}, 1000); | |
}); | |
</script> | |
""") | |
# 标题使用data-i18n属性以便JavaScript切换 | |
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>") | |
# 使用带有mobile-full-width类的响应式行 | |
with gr.Row(elem_classes="mobile-full-width"): | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
# 添加双语标签 - 上传图像 | |
input_image = gr.Image( | |
sources='upload', | |
type="numpy", | |
label="Upload Image / 上传图像", | |
elem_id="input-image", | |
height=320 | |
) | |
# 添加双语标签 - 提示词 | |
prompt = gr.Textbox( | |
label="Prompt / 提示词", | |
value='', | |
elem_id="prompt-input" | |
) | |
# 添加双语标签 - 快速提示词 | |
example_quick_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Quick Prompts / 快速提示词列表', | |
samples_per_page=1000, | |
components=[prompt] | |
) | |
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
# 按钮添加样式和双语标签 | |
with gr.Row(elem_classes="button-container"): | |
start_button = gr.Button( | |
value="Generate / 开始生成", | |
elem_classes="start-btn", | |
elem_id="start-button", | |
variant="primary" | |
) | |
end_button = gr.Button( | |
value="Stop / 结束生成", | |
elem_classes="stop-btn", | |
elem_id="stop-button", | |
interactive=False | |
) | |
# 参数设置区域 | |
with gr.Group(): | |
use_teacache = gr.Checkbox( | |
label='Use TeaCache / 使用TeaCache', | |
value=True, | |
info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。' | |
) | |
n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used | |
seed = gr.Number( | |
label="Seed / 随机种子", | |
value=31337, | |
precision=0 | |
) | |
# 添加slider-container类以便CSS触摸优化 | |
with gr.Group(elem_classes="slider-container"): | |
total_second_length = gr.Slider( | |
label="Video Length (max 5 seconds) / 视频长度(最大5秒)", | |
minimum=1, | |
maximum=5, | |
value=5, | |
step=0.1 | |
) | |
latent_window_size = gr.Slider( | |
label="Latent Window Size / 潜在窗口大小", | |
minimum=1, | |
maximum=33, | |
value=9, | |
step=1, | |
visible=False | |
) | |
steps = gr.Slider( | |
label="Inference Steps / 推理步数", | |
minimum=1, | |
maximum=100, | |
value=25, | |
step=1, | |
info='Changing this value is not recommended. / 不建议修改此值。' | |
) | |
cfg = gr.Slider( | |
label="CFG Scale", | |
minimum=1.0, | |
maximum=32.0, | |
value=1.0, | |
step=0.01, | |
visible=False | |
) | |
gs = gr.Slider( | |
label="Distilled CFG Scale / 蒸馏CFG比例", | |
minimum=1.0, | |
maximum=32.0, | |
value=10.0, | |
step=0.01, | |
info='Changing this value is not recommended. / 不建议修改此值。' | |
) | |
rs = gr.Slider( | |
label="CFG Rescale / CFG重缩放", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.0, | |
step=0.01, | |
visible=False | |
) | |
gpu_memory_preservation = gr.Slider( | |
label="GPU Memory (GB) / GPU推理保留内存(GB)", | |
minimum=6, | |
maximum=128, | |
value=6, | |
step=0.1, | |
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。" | |
) | |
# 右侧预览和结果列 | |
with gr.Column(scale=1, elem_classes="mobile-full-width"): | |
# 预览图像 | |
preview_image = gr.Image( | |
label="Preview / 预览", | |
height=200, | |
visible=False, | |
elem_classes="preview-container" | |
) | |
# 视频结果容器 | |
result_video = gr.Video( | |
label="Generated Video / 生成的视频", | |
autoplay=True, | |
show_share_button=True, # 添加分享按钮 | |
height=512, | |
loop=True, | |
elem_classes="video-container", | |
elem_id="result-video" | |
) | |
# 双语说明 | |
gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>") | |
# 进度指示器 | |
with gr.Group(elem_classes="progress-container"): | |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
# 错误信息区域 - 确保使用HTML组件以支持我们的自定义错误消息格式 | |
error_message = gr.HTML('', elem_id='error-message', visible=True) | |
# 处理函数 | |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] | |
# 开始和结束按钮事件 | |
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) | |
end_button.click(fn=end_process) | |
block.launch() | |
# 创建友好的错误显示HTML | |
def create_error_html(error_msg, is_timeout=False): | |
"""创建双语错误消息HTML""" | |
# 提供更友好的中英文双语错误信息 | |
en_msg = "" | |
zh_msg = "" | |
if is_timeout: | |
en_msg = "Processing timed out, but partial video may have been generated" if "部分视频" in error_msg else f"Processing timed out: {error_msg}" | |
zh_msg = "处理超时,但已生成部分视频" if "部分视频" in error_msg else f"处理超时: {error_msg}" | |
elif "模型加载失败" in error_msg: | |
en_msg = "Failed to load models. The Space may be experiencing high traffic or GPU issues." | |
zh_msg = "模型加载失败,可能是Space流量过高或GPU资源不足。" | |
elif "GPU" in error_msg or "CUDA" in error_msg or "内存" in error_msg or "memory" in error_msg: | |
en_msg = "GPU memory insufficient or GPU error. Try increasing GPU memory preservation value or reduce video length." | |
zh_msg = "GPU内存不足或GPU错误,请尝试增加GPU推理保留内存值或降低视频长度。" | |
elif "采样过程中出错" in error_msg: | |
if "部分" in error_msg: | |
en_msg = "Error during sampling process, but partial video has been generated." | |
zh_msg = "采样过程中出错,但已生成部分视频。" | |
else: | |
en_msg = "Error during sampling process. Unable to generate video." | |
zh_msg = "采样过程中出错,无法生成视频。" | |
elif "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg: | |
en_msg = "Network connection is unstable, model download timed out. Please try again later." | |
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。" | |
elif "VAE" in error_msg or "解码" in error_msg or "decode" in error_msg: | |
en_msg = "Error during video decoding or saving process. Try again with a different seed." | |
zh_msg = "视频解码或保存过程中出错,请尝试使用不同的随机种子。" | |
else: | |
en_msg = f"Processing error: {error_msg}" | |
zh_msg = f"处理过程出错: {error_msg}" | |
# 创建双语错误消息HTML - 添加有用的图标并确保CSS样式适用 | |
return f""" | |
<div class="error-message" id="custom-error-container"> | |
<div class="error-msg-en" data-lang="en"> | |
<span class="error-icon">⚠️</span> {en_msg} | |
</div> | |
<div class="error-msg-zh" data-lang="zh"> | |
<span class="error-icon">⚠️</span> {zh_msg} | |
</div> | |
</div> | |
<script> | |
// 根据当前语言显示相应的错误消息 | |
(function() {{ | |
const errorContainer = document.getElementById('custom-error-container'); | |
if (errorContainer) {{ | |
const currentLang = window.currentLang || 'en'; // 默认英语 | |
const errMsgs = errorContainer.querySelectorAll('[data-lang]'); | |
errMsgs.forEach(msg => {{ | |
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none'; | |
}}); | |
// 确保Gradio默认错误UI不显示 | |
const defaultErrorElements = document.querySelectorAll('.error'); | |
defaultErrorElements.forEach(el => {{ | |
el.style.display = 'none'; | |
}}); | |
}} | |
}})(); | |
</script> | |
""" |