Spaces:
Running
on
Zero
Running
on
Zero
File size: 76,028 Bytes
50f328c 2a8ac85 50f328c 2a8ac85 8336ddb 2a8ac85 8336ddb 2a8ac85 50f328c 0f1d758 d4dcfc5 0f1d758 d4dcfc5 0f1d758 d4dcfc5 0f1d758 50f328c cdbfba8 50f328c cdbfba8 0f1d758 cdbfba8 d4dcfc5 50f328c cdbfba8 d4dcfc5 50f328c 0f1d758 d4dcfc5 cdbfba8 d4dcfc5 0f1d758 d4dcfc5 cdbfba8 d4dcfc5 cdbfba8 0f1d758 d4dcfc5 cdbfba8 d4dcfc5 0f1d758 6dcbefe cdbfba8 6dcbefe d4dcfc5 6dcbefe d4dcfc5 6dcbefe d4dcfc5 6dcbefe d4dcfc5 6dcbefe cdbfba8 50f328c cdbfba8 50f328c d4dcfc5 8336ddb cdbfba8 d4dcfc5 8336ddb cdbfba8 50f328c 6dcbefe 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c 6dcbefe 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 da097bc 1082c60 da097bc d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 1082c60 da097bc 1082c60 da097bc d4dcfc5 1082c60 d4dcfc5 1082c60 50f328c 6dcbefe d4dcfc5 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 6dcbefe d4dcfc5 6dcbefe 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c d4dcfc5 50f328c 6dcbefe d4dcfc5 6dcbefe 50f328c 6dcbefe 50f328c d4dcfc5 50f328c 6dcbefe 50f328c d4dcfc5 6dcbefe d4dcfc5 50f328c 6dcbefe 50f328c 6dcbefe d4dcfc5 6dcbefe 50f328c 6dcbefe 1082c60 50f328c 1082c60 50f328c d4dcfc5 6dcbefe 1082c60 6dcbefe 1082c60 6dcbefe 1082c60 6dcbefe 1082c60 d4dcfc5 1082c60 d4dcfc5 50f328c 6dcbefe 1082c60 50f328c 217c6bd 0f1d758 217c6bd 0f1d758 6dcbefe 217c6bd 6dcbefe 217c6bd 6dcbefe 217c6bd 0236769 217c6bd da097bc 217c6bd d4dcfc5 217c6bd 6dcbefe 217c6bd da097bc 217c6bd 0236769 217c6bd 0236769 217c6bd 0f1d758 6dcbefe 217c6bd da097bc 1082c60 da097bc 1082c60 da097bc 1082c60 da097bc 6dcbefe 50f328c ffb7037 217c6bd ffb7037 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff 217c6bd 183a1ff ffb7037 217c6bd ffb7037 2a8ac85 50f328c 2a8ac85 8336ddb 2a8ac85 8336ddb 2a8ac85 50f328c 2a8ac85 50f328c 2a8ac85 50f328c 2a8ac85 50f328c 2a8ac85 50f328c 2a8ac85 8336ddb 2a8ac85 8336ddb 2a8ac85 183a1ff 217c6bd 1064203 217c6bd 1064203 217c6bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 |
from diffusers_helper.hf_login import login
import os
import threading
import time
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
import json
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
# 添加中英双语翻译字典
translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"zh": {
"title": "FramePack - 图像到视频生成",
"upload_image": "上传图像",
"prompt": "提示词",
"quick_prompts": "快速提示词列表",
"start_generation": "开始生成",
"stop_generation": "结束生成",
"use_teacache": "使用TeaCache",
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
"negative_prompt": "负面提示词",
"seed": "随机种子",
"video_length": "视频长度(最大5秒)",
"latent_window": "潜在窗口大小",
"steps": "推理步数",
"steps_info": "不建议修改此值。",
"cfg_scale": "CFG Scale",
"distilled_cfg": "蒸馏CFG比例",
"distilled_cfg_info": "不建议修改此值。",
"cfg_rescale": "CFG重缩放",
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
"next_latents": "下一批潜变量",
"generated_video": "生成的视频",
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
"error_message": "错误信息",
"processing_error": "处理过程出错",
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
"partial_video": "处理过程中出现错误,但已生成部分视频",
"processing_interrupt": "处理过程中断,但已生成部分视频"
}
}
# 语言切换功能
def get_translation(key, lang="en"):
if lang in translations and key in translations[lang]:
return translations[lang][key]
# 默认返回英文
return translations["en"].get(key, key)
# 默认语言设置
current_language = "en"
# 切换语言函数
def switch_language():
global current_language
current_language = "zh" if current_language == "en" else "en"
return current_language
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
# 检查是否在Hugging Face Space环境中
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
# 添加变量跟踪GPU可用性
GPU_AVAILABLE = False
GPU_INITIALIZED = False
last_update_time = time.time()
# 如果在Hugging Face Space中,导入spaces模块
if IN_HF_SPACE:
try:
import spaces
print("在Hugging Face Space环境中运行,已导入spaces模块")
# 检查GPU可用性
try:
GPU_AVAILABLE = torch.cuda.is_available()
print(f"GPU available: {GPU_AVAILABLE}")
if GPU_AVAILABLE:
print(f"GPU device name: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
# 尝试进行小型GPU操作,确认GPU实际可用
test_tensor = torch.zeros(1, device='cuda')
test_tensor = test_tensor + 1
del test_tensor
print("成功进行GPU测试操作")
else:
print("警告: CUDA报告可用,但未检测到GPU设备")
except Exception as e:
GPU_AVAILABLE = False
print(f"检查GPU时出错: {e}")
print("将使用CPU模式运行")
except ImportError:
print("未能导入spaces模块,可能不在Hugging Face Space环境中")
GPU_AVAILABLE = torch.cuda.is_available()
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
# 在Spaces环境中,我们延迟所有CUDA操作
if not IN_HF_SPACE:
# 仅在非Spaces环境中获取CUDA内存
try:
if torch.cuda.is_available():
free_mem_gb = get_cuda_free_memory_gb(gpu)
print(f'Free VRAM {free_mem_gb} GB')
else:
free_mem_gb = 6.0 # 默认值
print("CUDA不可用,使用默认的内存设置")
except Exception as e:
free_mem_gb = 6.0 # 默认值
print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
high_vram = free_mem_gb > 60
print(f'High-VRAM Mode: {high_vram}')
else:
# 在Spaces环境中使用默认值
print("在Spaces环境中使用默认内存设置")
try:
if GPU_AVAILABLE:
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 # 使用90%的GPU内存
high_vram = free_mem_gb > 10 # 更保守的条件
else:
free_mem_gb = 6.0 # 默认值
high_vram = False
except Exception as e:
print(f"获取GPU内存时出错: {e}")
free_mem_gb = 6.0 # 默认值
high_vram = False
print(f'GPU内存: {free_mem_gb:.2f} GB, High-VRAM Mode: {high_vram}')
# 使用models变量存储全局模型引用
models = {}
cpu_fallback_mode = not GPU_AVAILABLE # 如果GPU不可用,使用CPU回退模式
# 使用加载模型的函数
def load_models():
global models, cpu_fallback_mode, GPU_INITIALIZED
if GPU_INITIALIZED:
print("模型已加载,跳过重复加载")
return models
print("开始加载模型...")
try:
# 设置设备,根据GPU可用性确定
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
model_device = 'cpu' # 初始加载到CPU
# 降低精度以节省内存
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
print(f"使用设备: {device}, 模型精度: {dtype}, Transformer精度: {transformer_dtype}")
# 加载模型
try:
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
print("成功加载所有模型")
except Exception as e:
print(f"加载模型时出错: {e}")
print("尝试降低精度重新加载...")
# 降低精度重试
dtype = torch.float32
transformer_dtype = torch.float32
cpu_fallback_mode = True
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
print("使用CPU模式成功加载所有模型")
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram or cpu_fallback_mode:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
# 设置模型精度
if not cpu_fallback_mode:
transformer.to(dtype=transformer_dtype)
vae.to(dtype=dtype)
image_encoder.to(dtype=dtype)
text_encoder.to(dtype=dtype)
text_encoder_2.to(dtype=dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if torch.cuda.is_available() and not cpu_fallback_mode:
try:
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=device)
DynamicSwapInstaller.install_model(text_encoder, device=device)
else:
text_encoder.to(device)
text_encoder_2.to(device)
image_encoder.to(device)
vae.to(device)
transformer.to(device)
print(f"成功将模型移动到{device}设备")
except Exception as e:
print(f"移动模型到{device}时出错: {e}")
print("回退到CPU模式")
cpu_fallback_mode = True
# 保存到全局变量
models = {
'text_encoder': text_encoder,
'text_encoder_2': text_encoder_2,
'tokenizer': tokenizer,
'tokenizer_2': tokenizer_2,
'vae': vae,
'feature_extractor': feature_extractor,
'image_encoder': image_encoder,
'transformer': transformer
}
GPU_INITIALIZED = True
print(f"模型加载完成,运行模式: {'CPU' if cpu_fallback_mode else 'GPU'}")
return models
except Exception as e:
print(f"加载模型过程中发生错误: {e}")
traceback.print_exc()
# 记录更详细的错误信息
error_info = {
"error": str(e),
"traceback": traceback.format_exc(),
"cuda_available": torch.cuda.is_available(),
"device": "cpu" if cpu_fallback_mode else "cuda",
}
# 保存错误信息到文件,方便排查
try:
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
f.write(str(error_info))
except:
pass
# 返回空字典,允许应用继续尝试运行
cpu_fallback_mode = True
return {}
# 使用Hugging Face Spaces GPU装饰器
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
try:
@spaces.GPU
def initialize_models():
"""在@spaces.GPU装饰器内初始化模型"""
global GPU_INITIALIZED
try:
result = load_models()
GPU_INITIALIZED = True
return result
except Exception as e:
print(f"使用spaces.GPU初始化模型时出错: {e}")
traceback.print_exc()
global cpu_fallback_mode
cpu_fallback_mode = True
# 不使用装饰器再次尝试
return load_models()
except Exception as e:
print(f"创建spaces.GPU装饰器时出错: {e}")
# 如果装饰器出错,直接使用非装饰器版本
def initialize_models():
return load_models()
# 以下函数内部会延迟获取模型
def get_models():
"""获取模型,如果尚未加载则加载模型"""
global models, GPU_INITIALIZED
# 添加模型加载锁,防止并发加载
model_loading_key = "__model_loading__"
if not models:
# 检查是否正在加载模型
if model_loading_key in globals():
print("模型正在加载中,等待...")
# 等待模型加载完成
import time
start_wait = time.time()
while not models and model_loading_key in globals():
time.sleep(0.5)
# 超过60秒认为加载失败
if time.time() - start_wait > 60:
print("等待模型加载超时")
break
if models:
return models
try:
# 设置加载标记
globals()[model_loading_key] = True
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
try:
print("使用@spaces.GPU装饰器加载模型")
models = initialize_models()
except Exception as e:
print(f"使用GPU装饰器加载模型失败: {e}")
print("尝试直接加载模型")
models = load_models()
else:
print("直接加载模型")
models = load_models()
except Exception as e:
print(f"加载模型时发生未预期的错误: {e}")
traceback.print_exc()
# 确保有一个空字典
models = {}
finally:
# 无论成功与否,都移除加载标记
if model_loading_key in globals():
del globals()[model_loading_key]
return models
stream = AsyncStream()
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global last_update_time
last_update_time = time.time()
# 限制视频长度不超过5秒
total_second_length = min(total_second_length, 5.0)
# 获取模型
try:
models = get_models()
if not models:
error_msg = "模型加载失败,请检查日志获取详细信息"
print(error_msg)
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
text_encoder = models['text_encoder']
text_encoder_2 = models['text_encoder_2']
tokenizer = models['tokenizer']
tokenizer_2 = models['tokenizer_2']
vae = models['vae']
feature_extractor = models['feature_extractor']
image_encoder = models['image_encoder']
transformer = models['transformer']
except Exception as e:
error_msg = f"获取模型时出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# 确定设备
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
print(f"使用设备: {device} 进行推理")
# 调整参数以适应CPU模式
if cpu_fallback_mode:
print("CPU模式下使用更精简的参数")
# 减小处理大小以加快CPU处理
latent_window_size = min(latent_window_size, 5)
steps = min(steps, 15) # 减少步数
total_second_length = min(total_second_length, 2.0) # CPU模式下进一步限制视频长度
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
last_output_filename = None
history_pixels = None
history_latents = None
total_generated_latent_frames = 0
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Clean GPU
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
except Exception as e:
print(f"卸载模型时出错: {e}")
# 继续执行,不中断流程
# Text encoding
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
fake_diffusers_current_device(text_encoder, device)
load_model_as_complete(text_encoder_2, target_device=device)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
except Exception as e:
error_msg = f"文本编码过程出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# Processing input image
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
try:
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
# 如果是CPU模式,缩小处理尺寸
if cpu_fallback_mode:
height = min(height, 320)
width = min(width, 320)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
except Exception as e:
error_msg = f"图像处理过程出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# VAE encoding
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(vae, target_device=device)
start_latent = vae_encode(input_image_pt, vae)
except Exception as e:
error_msg = f"VAE编码过程出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# CLIP Vision
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
try:
if not high_vram and not cpu_fallback_mode:
load_model_as_complete(image_encoder, target_device=device)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
except Exception as e:
error_msg = f"CLIP Vision编码过程出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# Dtype
try:
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
except Exception as e:
error_msg = f"数据类型转换出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
# Sampling
last_update_time = time.time()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
try:
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
except Exception as e:
error_msg = f"初始化历史状态出错: {e}"
print(error_msg)
traceback.print_exc()
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for latent_padding in latent_paddings:
last_update_time = time.time()
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
# 确保在结束时保存当前的视频
if history_pixels is not None and total_generated_latent_frames > 0:
try:
output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"保存最终视频时出错: {e}")
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
try:
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
except Exception as e:
error_msg = f"准备采样数据时出错: {e}"
print(error_msg)
traceback.print_exc()
# 尝试继续下一轮迭代而不是完全终止
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
except Exception as e:
print(f"移动transformer到GPU时出错: {e}")
# 继续执行,可能影响性能但不必终止
if use_teacache and not cpu_fallback_mode:
try:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
except Exception as e:
print(f"初始化teacache时出错: {e}")
# 禁用teacache并继续
transformer.initialize_teacache(enable_teacache=False)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
global last_update_time
last_update_time = time.time()
try:
# 首先检查是否有停止信号
print(f"【调试】回调函数: 步骤 {d['i']}, 检查是否有停止信号")
try:
queue_top = stream.input_queue.top()
print(f"【调试】回调函数: 队列顶部信号 = {queue_top}")
if queue_top == 'end':
print("【调试】回调函数: 检测到停止信号,准备中断...")
try:
stream.output_queue.push(('end', None))
print("【调试】回调函数: 成功向输出队列推送end信号")
except Exception as e:
print(f"【调试】回调函数: 向输出队列推送end信号失败: {e}")
print("【调试】回调函数: 即将抛出KeyboardInterrupt异常")
raise KeyboardInterrupt('用户主动结束任务')
except Exception as e:
print(f"【调试】回调函数: 检查队列顶部信号出错: {e}")
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
except KeyboardInterrupt as e:
# 捕获并重新抛出中断异常,确保它能传播到采样函数
print(f"【调试】回调函数: 捕获到KeyboardInterrupt: {e}")
print("【调试】回调函数: 重新抛出中断异常,确保传播到采样函数")
raise
except Exception as e:
print(f"【调试】回调函数中出错: {e}")
# 不中断采样过程
print(f"【调试】回调函数: 步骤 {d['i']} 完成")
return
try:
sampling_start_time = time.time()
print(f"开始采样,设备: {device}, 数据类型: {transformer.dtype}, 使用TeaCache: {use_teacache and not cpu_fallback_mode}")
try:
print("【调试】开始sample_hunyuan采样流程")
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=device,
dtype=transformer.dtype,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
print(f"【调试】采样完成,用时: {time.time() - sampling_start_time:.2f}秒")
except KeyboardInterrupt as e:
# 用户主动中断
print(f"【调试】捕获到KeyboardInterrupt: {e}")
print("【调试】用户主动中断采样过程,处理中断逻辑")
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
print(f"【调试】已有部分生成视频: {last_output_filename},返回此视频")
stream.output_queue.push(('file', last_output_filename))
error_msg = "用户中断生成过程,但已生成部分视频"
else:
print("【调试】没有部分生成视频,返回中断消息")
error_msg = "用户中断生成过程,未生成视频"
print(f"【调试】推送错误消息: {error_msg}")
stream.output_queue.push(('error', error_msg))
print("【调试】推送end信号")
stream.output_queue.push(('end', None))
print("【调试】中断处理完成,返回")
return
except Exception as e:
print(f"采样过程中出错: {e}")
traceback.print_exc()
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
# 创建错误信息
error_msg = f"采样过程中出错,但已返回部分生成的视频: {e}"
stream.output_queue.push(('error', error_msg))
else:
# 如果没有生成的视频,返回错误信息
error_msg = f"采样过程中出错,无法生成视频: {e}"
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
try:
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
except Exception as e:
error_msg = f"处理生成的潜变量时出错: {e}"
print(error_msg)
traceback.print_exc()
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
stream.output_queue.push(('error', error_msg))
stream.output_queue.push(('end', None))
return
if not high_vram and not cpu_fallback_mode:
try:
offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=device)
except Exception as e:
print(f"管理模型内存时出错: {e}")
# 继续执行
try:
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
except Exception as e:
error_msg = f"处理历史潜变量时出错: {e}"
print(error_msg)
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
continue
try:
vae_start_time = time.time()
print(f"开始VAE解码,潜变量形状: {real_history_latents.shape}")
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
print(f"VAE解码完成,用时: {time.time() - vae_start_time:.2f}秒")
if not high_vram and not cpu_fallback_mode:
try:
unload_complete_models()
except Exception as e:
print(f"卸载模型时出错: {e}")
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_start_time = time.time()
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f"保存视频完成,用时: {time.time() - save_start_time:.2f}秒")
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
last_output_filename = output_filename
stream.output_queue.push(('file', output_filename))
except Exception as e:
print(f"视频解码或保存过程中出错: {e}")
traceback.print_exc()
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
stream.output_queue.push(('file', last_output_filename))
# 记录错误信息
error_msg = f"视频解码或保存过程中出错: {e}"
stream.output_queue.push(('error', error_msg))
# 尝试继续下一次迭代
continue
if is_last_section:
break
except Exception as e:
print(f"【调试】处理过程中出现错误: {e}, 类型: {type(e)}")
print(f"【调试】错误详情:")
traceback.print_exc()
# 检查是否是中断类型异常
if isinstance(e, KeyboardInterrupt):
print("【调试】捕获到外层KeyboardInterrupt异常")
if not high_vram and not cpu_fallback_mode:
try:
print("【调试】尝试卸载模型以释放资源")
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
print("【调试】模型卸载成功")
except Exception as unload_error:
print(f"【调试】卸载模型时出错: {unload_error}")
pass
# 如果已经有生成的视频,返回最后生成的视频
if last_output_filename:
print(f"【调试】外层异常处理: 返回已生成的部分视频 {last_output_filename}")
stream.output_queue.push(('file', last_output_filename))
else:
print("【调试】外层异常处理: 未找到已生成的视频")
# 返回错误信息
error_msg = f"处理过程中出现错误: {e}"
print(f"【调试】外层异常处理: 推送错误信息: {error_msg}")
stream.output_queue.push(('error', error_msg))
# 确保总是返回end信号
print("【调试】工作函数结束,推送end信号")
stream.output_queue.push(('end', None))
return
# 使用Hugging Face Spaces GPU装饰器处理进程函数
if IN_HF_SPACE and 'spaces' in globals():
@spaces.GPU
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
# 初始化UI状态
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
# 异步启动worker
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
# 持续检查worker的输出
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
# 清除错误显示,确保文件成功时不显示错误
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
# 更新进度时不改变错误信息,并确保停止按钮可交互
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"收到错误消息: {error_message}")
# 不立即显示,等待end信号
if flag == 'end':
# 如果有最后的视频文件,确保返回
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
# 如果有错误消息,创建友好的错误显示
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
# 确保成功完成时不显示任何错误
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"处理输出时出错: {e}")
# 检查是否长时间没有更新
current_time = time.time()
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
# 如果有部分生成的视频,返回
if prev_output_filename:
error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"启动处理时出错: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
process = process_with_gpu
else:
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
global stream
assert input_image is not None, 'No input image!'
# 初始化UI状态
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
try:
stream = AsyncStream()
# 异步启动worker
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
output_filename = None
prev_output_filename = None
error_message = None
# 持续检查worker的输出
while True:
try:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
prev_output_filename = output_filename
# 清除错误显示,确保文件成功时不显示错误
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
# 更新进度时不改变错误信息,并确保停止按钮可交互
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == 'error':
error_message = data
print(f"收到错误消息: {error_message}")
# 不立即显示,等待end信号
if flag == 'end':
# 如果有最后的视频文件,确保返回
if output_filename is None and prev_output_filename is not None:
output_filename = prev_output_filename
# 如果有错误消息,创建友好的错误显示
if error_message:
error_html = create_error_html(error_message)
yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
# 确保成功完成时不显示任何错误
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"处理输出时出错: {e}")
# 检查是否长时间没有更新
current_time = time.time()
if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
# 如果有部分生成的视频,返回
if prev_output_filename:
error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
else:
error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
print(f"启动处理时出错: {e}")
traceback.print_exc()
error_msg = str(e)
error_html = create_error_html(error_msg)
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
def end_process():
"""停止生成过程函数 - 通过在队列中推送'end'信号来中断生成"""
print("【调试】用户点击了停止按钮,发送停止信号...")
# 确保stream已初始化
if 'stream' in globals() and stream is not None:
# 在推送前检查队列状态
try:
current_top = stream.input_queue.top()
print(f"【调试】当前队列顶部信号: {current_top}")
except Exception as e:
print(f"【调试】检查队列状态出错: {e}")
# 推送end信号
try:
stream.input_queue.push('end')
print("【调试】成功推送end信号到队列")
# 验证信号是否成功推送
try:
current_top_after = stream.input_queue.top()
print(f"【调试】推送后队列顶部信号: {current_top_after}")
except Exception as e:
print(f"【调试】验证推送后队列状态出错: {e}")
except Exception as e:
print(f"【调试】推送end信号到队列失败: {e}")
else:
print("【调试】警告: stream未初始化,无法发送停止信号")
return None
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
# 创建一个自定义CSS,增加响应式布局支持
def make_custom_css():
progress_bar_css = make_progress_bar_css()
responsive_css = """
/* 基础响应式设置 */
#app-container {
max-width: 100%;
margin: 0 auto;
}
/* 语言切换按钮样式 */
#language-toggle {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
background-color: rgba(0, 0, 0, 0.7);
color: white;
border: none;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
font-size: 14px;
}
/* 页面标题样式 */
h1 {
font-size: 2rem;
text-align: center;
margin-bottom: 1rem;
}
/* 按钮样式 */
.start-btn, .stop-btn {
min-height: 45px;
font-size: 1rem;
}
/* 移动设备样式 - 小屏幕 */
@media (max-width: 768px) {
h1 {
font-size: 1.5rem;
margin-bottom: 0.5rem;
}
/* 单列布局 */
.mobile-full-width {
flex-direction: column !important;
}
.mobile-full-width > .gr-block {
min-width: 100% !important;
flex-grow: 1;
}
/* 调整视频大小 */
.video-container {
height: auto !important;
}
/* 调整按钮大小 */
.button-container button {
min-height: 50px;
font-size: 1rem;
touch-action: manipulation;
}
/* 调整滑块 */
.slider-container input[type="range"] {
height: 30px;
}
}
/* 平板设备样式 */
@media (min-width: 769px) and (max-width: 1024px) {
.tablet-adjust {
width: 48% !important;
}
}
/* 黑暗模式支持 */
@media (prefers-color-scheme: dark) {
.dark-mode-text {
color: #f0f0f0;
}
.dark-mode-bg {
background-color: #2a2a2a;
}
}
/* 增强可访问性 */
button, input, select, textarea {
font-size: 16px; /* 防止iOS缩放 */
}
/* 触摸优化 */
button, .interactive-element {
min-height: 44px;
min-width: 44px;
}
/* 提高对比度 */
.high-contrast {
color: #fff;
background-color: #000;
}
/* 进度条样式增强 */
.progress-container {
margin-top: 10px;
margin-bottom: 10px;
}
/* 错误消息样式 */
#error-message {
color: #ff4444;
font-weight: bold;
padding: 10px;
border-radius: 4px;
margin-top: 10px;
}
/* 确保错误容器正确显示 */
.error-message {
background-color: rgba(255, 0, 0, 0.1);
padding: 10px;
border-radius: 4px;
margin-top: 10px;
border: 1px solid #ffcccc;
}
/* 处理多语言错误消息 */
.error-msg-en, .error-msg-zh {
font-weight: bold;
}
/* 错误图标 */
.error-icon {
color: #ff4444;
font-size: 18px;
margin-right: 8px;
}
/* 确保空错误消息不显示背景和边框 */
#error-message:empty {
background-color: transparent;
border: none;
padding: 0;
margin: 0;
}
/* 修复Gradio默认错误显示 */
.error {
display: none !important;
}
"""
# 合并CSS
combined_css = progress_bar_css + responsive_css
return combined_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
# 添加语言切换功能
gr.HTML("""
<div id="app-container">
<button id="language-toggle" onclick="toggleLanguage()">中文/English</button>
</div>
<script>
// 全局变量,存储当前语言
window.currentLang = "en";
// 语言切换函数
function toggleLanguage() {
window.currentLang = window.currentLang === "en" ? "zh" : "en";
// 获取所有带有data-i18n属性的元素
const elements = document.querySelectorAll('[data-i18n]');
// 遍历并切换语言
elements.forEach(el => {
const key = el.getAttribute('data-i18n');
const translations = {
"en": {
"title": "FramePack - Image to Video Generation",
"upload_image": "Upload Image",
"prompt": "Prompt",
"quick_prompts": "Quick Prompts",
"start_generation": "Generate",
"stop_generation": "Stop",
"use_teacache": "Use TeaCache",
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"video_length": "Video Length (max 5 seconds)",
"latent_window": "Latent Window Size",
"steps": "Inference Steps",
"steps_info": "Changing this value is not recommended.",
"cfg_scale": "CFG Scale",
"distilled_cfg": "Distilled CFG Scale",
"distilled_cfg_info": "Changing this value is not recommended.",
"cfg_rescale": "CFG Rescale",
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
"next_latents": "Next Latents",
"generated_video": "Generated Video",
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
"error_message": "Error",
"processing_error": "Processing error",
"network_error": "Network connection is unstable, model download timed out. Please try again later.",
"memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
"partial_video": "Processing error, but partial video has been generated",
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
},
"zh": {
"title": "FramePack - 图像到视频生成",
"upload_image": "上传图像",
"prompt": "提示词",
"quick_prompts": "快速提示词列表",
"start_generation": "开始生成",
"stop_generation": "结束生成",
"use_teacache": "使用TeaCache",
"teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
"negative_prompt": "负面提示词",
"seed": "随机种子",
"video_length": "视频长度(最大5秒)",
"latent_window": "潜在窗口大小",
"steps": "推理步数",
"steps_info": "不建议修改此值。",
"cfg_scale": "CFG Scale",
"distilled_cfg": "蒸馏CFG比例",
"distilled_cfg_info": "不建议修改此值。",
"cfg_rescale": "CFG重缩放",
"gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
"gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
"next_latents": "下一批潜变量",
"generated_video": "生成的视频",
"sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
"error_message": "错误信息",
"processing_error": "处理过程出错",
"network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
"memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
"model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
"partial_video": "处理过程中出现错误,但已生成部分视频",
"processing_interrupt": "处理过程中断,但已生成部分视频"
}
};
if (translations[window.currentLang] && translations[window.currentLang][key]) {
// 根据元素类型设置文本
if (el.tagName === 'BUTTON') {
el.textContent = translations[window.currentLang][key];
} else if (el.tagName === 'LABEL') {
el.textContent = translations[window.currentLang][key];
} else {
el.innerHTML = translations[window.currentLang][key];
}
}
});
// 更新页面上其他元素
document.querySelectorAll('.bilingual-label').forEach(el => {
const enText = el.getAttribute('data-en');
const zhText = el.getAttribute('data-zh');
el.textContent = window.currentLang === 'en' ? enText : zhText;
});
// 处理错误消息容器
document.querySelectorAll('[data-lang]').forEach(el => {
el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none';
});
}
// 页面加载后初始化
document.addEventListener('DOMContentLoaded', function() {
// 添加data-i18n属性到需要国际化的元素
setTimeout(() => {
// 给所有标签添加i18n属性
const labelMap = {
"Upload Image": "upload_image",
"上传图像": "upload_image",
"Prompt": "prompt",
"提示词": "prompt",
"Quick Prompts": "quick_prompts",
"快速提示词列表": "quick_prompts",
"Generate": "start_generation",
"开始生成": "start_generation",
"Stop": "stop_generation",
"结束生成": "stop_generation",
// 添加其他标签映射...
};
// 处理标签
document.querySelectorAll('label, span, button').forEach(el => {
const text = el.textContent.trim();
if (labelMap[text]) {
el.setAttribute('data-i18n', labelMap[text]);
}
});
// 添加特定元素的i18n属性
const titleEl = document.querySelector('h1');
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
// 初始化标签语言
toggleLanguage();
}, 1000);
});
</script>
""")
# 标题使用data-i18n属性以便JavaScript切换
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>")
# 使用带有mobile-full-width类的响应式行
with gr.Row(elem_classes="mobile-full-width"):
with gr.Column(scale=1, elem_classes="mobile-full-width"):
# 添加双语标签 - 上传图像
input_image = gr.Image(
sources='upload',
type="numpy",
label="Upload Image / 上传图像",
elem_id="input-image",
height=320
)
# 添加双语标签 - 提示词
prompt = gr.Textbox(
label="Prompt / 提示词",
value='',
elem_id="prompt-input"
)
# 添加双语标签 - 快速提示词
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts / 快速提示词列表',
samples_per_page=1000,
components=[prompt]
)
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
# 按钮添加样式和双语标签
with gr.Row(elem_classes="button-container"):
start_button = gr.Button(
value="Generate / 开始生成",
elem_classes="start-btn",
elem_id="start-button",
variant="primary"
)
end_button = gr.Button(
value="Stop / 结束生成",
elem_classes="stop-btn",
elem_id="stop-button",
interactive=False
)
# 参数设置区域
with gr.Group():
use_teacache = gr.Checkbox(
label='Use TeaCache / 使用TeaCache',
value=True,
info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。'
)
n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used
seed = gr.Number(
label="Seed / 随机种子",
value=31337,
precision=0
)
# 添加slider-container类以便CSS触摸优化
with gr.Group(elem_classes="slider-container"):
total_second_length = gr.Slider(
label="Video Length (max 5 seconds) / 视频长度(最大5秒)",
minimum=1,
maximum=5,
value=5,
step=0.1
)
latent_window_size = gr.Slider(
label="Latent Window Size / 潜在窗口大小",
minimum=1,
maximum=33,
value=9,
step=1,
visible=False
)
steps = gr.Slider(
label="Inference Steps / 推理步数",
minimum=1,
maximum=100,
value=25,
step=1,
info='Changing this value is not recommended. / 不建议修改此值。'
)
cfg = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=32.0,
value=1.0,
step=0.01,
visible=False
)
gs = gr.Slider(
label="Distilled CFG Scale / 蒸馏CFG比例",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.01,
info='Changing this value is not recommended. / 不建议修改此值。'
)
rs = gr.Slider(
label="CFG Rescale / CFG重缩放",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
visible=False
)
gpu_memory_preservation = gr.Slider(
label="GPU Memory (GB) / GPU推理保留内存(GB)",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。"
)
# 右侧预览和结果列
with gr.Column(scale=1, elem_classes="mobile-full-width"):
# 预览图像
preview_image = gr.Image(
label="Preview / 预览",
height=200,
visible=False,
elem_classes="preview-container"
)
# 视频结果容器
result_video = gr.Video(
label="Generated Video / 生成的视频",
autoplay=True,
show_share_button=True, # 添加分享按钮
height=512,
loop=True,
elem_classes="video-container",
elem_id="result-video"
)
# 双语说明
gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>")
# 进度指示器
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
# 错误信息区域 - 确保使用HTML组件以支持我们的自定义错误消息格式
error_message = gr.HTML('', elem_id='error-message', visible=True)
# 处理函数
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
# 开始和结束按钮事件
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch()
# 创建友好的错误显示HTML
def create_error_html(error_msg, is_timeout=False):
"""创建双语错误消息HTML"""
# 提供更友好的中英文双语错误信息
en_msg = ""
zh_msg = ""
if is_timeout:
en_msg = "Processing timed out, but partial video may have been generated" if "部分视频" in error_msg else f"Processing timed out: {error_msg}"
zh_msg = "处理超时,但已生成部分视频" if "部分视频" in error_msg else f"处理超时: {error_msg}"
elif "模型加载失败" in error_msg:
en_msg = "Failed to load models. The Space may be experiencing high traffic or GPU issues."
zh_msg = "模型加载失败,可能是Space流量过高或GPU资源不足。"
elif "GPU" in error_msg or "CUDA" in error_msg or "内存" in error_msg or "memory" in error_msg:
en_msg = "GPU memory insufficient or GPU error. Try increasing GPU memory preservation value or reduce video length."
zh_msg = "GPU内存不足或GPU错误,请尝试增加GPU推理保留内存值或降低视频长度。"
elif "采样过程中出错" in error_msg:
if "部分" in error_msg:
en_msg = "Error during sampling process, but partial video has been generated."
zh_msg = "采样过程中出错,但已生成部分视频。"
else:
en_msg = "Error during sampling process. Unable to generate video."
zh_msg = "采样过程中出错,无法生成视频。"
elif "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg:
en_msg = "Network connection is unstable, model download timed out. Please try again later."
zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。"
elif "VAE" in error_msg or "解码" in error_msg or "decode" in error_msg:
en_msg = "Error during video decoding or saving process. Try again with a different seed."
zh_msg = "视频解码或保存过程中出错,请尝试使用不同的随机种子。"
else:
en_msg = f"Processing error: {error_msg}"
zh_msg = f"处理过程出错: {error_msg}"
# 创建双语错误消息HTML - 添加有用的图标并确保CSS样式适用
return f"""
<div class="error-message" id="custom-error-container">
<div class="error-msg-en" data-lang="en">
<span class="error-icon">⚠️</span> {en_msg}
</div>
<div class="error-msg-zh" data-lang="zh">
<span class="error-icon">⚠️</span> {zh_msg}
</div>
</div>
<script>
// 根据当前语言显示相应的错误消息
(function() {{
const errorContainer = document.getElementById('custom-error-container');
if (errorContainer) {{
const currentLang = window.currentLang || 'en'; // 默认英语
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
errMsgs.forEach(msg => {{
msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
}});
// 确保Gradio默认错误UI不显示
const defaultErrorElements = document.querySelectorAll('.error');
defaultErrorElements.forEach(el => {{
el.style.display = 'none';
}});
}}
}})();
</script>
""" |