tommonopoli's picture
app first commit
b53fda4
raw
history blame
18.8 kB
import numpy as np
import torch
import rasterio
import cv2
from transformers import SegformerForSemanticSegmentation
from tqdm import tqdm
from PIL import Image
from scipy.ndimage import grey_dilation
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from .viz_utils import alpha_composite
def read_raster(path, order='CHW'):
"""Read a raster file and return a numpy array"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
with rasterio.open(path) as src:
img = src.read()
if order == 'HWC':
img = np.moveaxis(img, 0, -1)
return img
def write_raster(path, img, profile, order='CHW'):
"""Write a numpy array to a raster file"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
if order == 'HWC':
img = np.moveaxis(img, -1, 0)
with rasterio.open(path, 'w', **profile) as dst:
dst.write(img)
def resize(img, shape=None, scaling_factor=1., order='CHW'):
"""Resize an image by a given scaling factor"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
assert shape is None or scaling_factor == 1., "Got both shape and scaling_factor. Please provide only one of them"
# resize image
if order == 'CHW':
img = np.moveaxis(img, 0, -1) # CHW -> HWC
if shape is not None:
img = cv2.resize(img, shape[::-1], interpolation=cv2.INTER_LINEAR)
else:
img = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR)
# NB: cv2.resize returns a HW image if the input image is HW1: restore the C dimension
if len(img.shape) == 2:
img = img[..., None]
if order == 'CHW':
img = np.moveaxis(img, -1, 0) # HWC -> CHW
return img
def minimum_needed_padding(img_size, patch_size: int, stride: int):
"""
Compute the minimum padding needed to make an image divisible by a patch size with a given stride.
Args:
image_shape (tuple): the shape (H,W) of the image tensor
patch_size (int): the size of the patches to extract
stride (int): the stride to use when extracting patches
Returns:
tuple: the padding needed to make the image tensor divisible by the patch size with the given stride
"""
img_size = np.array(img_size)
pad = np.where(
img_size <= patch_size,
(patch_size - img_size) % patch_size, # the % patch_size is to handle the case img_size = (0,0)
(stride - (img_size - patch_size)) % stride
)
pad_t, pad_l = pad // 2
pad_b, pad_r = pad[0] - pad_t, pad[1] - pad_l
return pad_t, pad_b, pad_l, pad_r
def pad(img, pad, order='CHW'):
"""Pad an image by the given pad values, in the format (pad_t, pad_b, pad_l, pad_r)"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
pad_t, pad_b, pad_l, pad_r = pad
# pad image
if order == 'HWC':
padded_img = np.pad(img, ((pad_t,pad_b), (pad_l,pad_r), (0,0)), mode='constant', constant_values=0) # can also try mode='reflect'
else:
padded_img = np.pad(img, ((0,0), (pad_t,pad_b), (pad_l,pad_r)), mode='constant', constant_values=0) # can also try mode='reflect'
if isinstance(img, torch.Tensor):
padded_img = torch.tensor(padded_img)
return padded_img
def extract_patches(img, patch_size=512, stride=256, order='CHW', only_return_idx=True):
"""Extract patches from an image, in the format (h_start, h_end, w_start, w_end)"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
if order == 'HWC':
H, W = img.shape[:2]
else:
H, W = img.shape[1:]
# compute the number of patches
n_patches = ((H - patch_size) // stride + 1) * ((W - patch_size) // stride + 1)
# extract patches
patches = []
patches_idx = []
for i in range(0, H-patch_size+1, stride):
for j in range(0, W-patch_size+1, stride):
patches_idx.append((i, i+patch_size, j, j+patch_size))
if not only_return_idx:
if order == 'HWC':
patch = img[i:i+patch_size, j:j+patch_size, :]
else:
patch = img[:, i:i+patch_size, j:j+patch_size]
patches.append(patch)
if only_return_idx:
return patches_idx
return patches, patches_idx
def segment_batch(batch, model):
# perform prediction
with torch.no_grad():
out = model(batch) # (n_patches, 1, H, W) logits
if isinstance(model, SegformerForSemanticSegmentation):
out = upsample(out.logits, size=batch.shape[-2:])
# apply sigmoid
out = torch.sigmoid(out) # logits -> confidence scores
return out
def upsample(x, size):
"""Upsample a 3D/4D/5D tensor"""
return torch.nn.functional.interpolate(x, size=size, mode='bilinear', align_corners=False)
def merge_patches(patches, patches_idx, rotate=False, canvas_shape=None, order='CHW'): # TODO
"""Merge patches into a single image"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
if rotate:
axes_to_rotate = (0,1) if order == 'HWC' else (1,2)
patches = [np.rot90(p, -i, axes=axes_to_rotate) for i,p in enumerate(patches)]
else:
assert len(patches) == len(patches_idx), f"Got {len(patches)} patches and {len(patches_idx)} indexes"
# if canvas_shape is None, infer it from patches_idx
if canvas_shape is None:
patches_idx_zipped = list(zip(*patches_idx))
canvas_H = max(patches_idx_zipped[1])
canvas_W = max(patches_idx_zipped[3])
else:
canvas_H, canvas_W = canvas_shape
# initialize canvas
dtype = patches[0].dtype
if order == 'HWC':
canvas_C = patches[0].shape[-1]
canvas = np.zeros((canvas_H, canvas_W, canvas_C), dtype=dtype) # HWC
n_overlapping_patches = np.zeros((canvas_H, canvas_W, 1))
else:
canvas_C = patches[0].shape[0]
canvas = np.zeros((canvas_C, canvas_H, canvas_W, ), dtype=dtype) # CHW
n_overlapping_patches = np.zeros((1, canvas_H, canvas_W))
# merge patches
for p, (t,b,l,r) in zip(patches, patches_idx):
if order == 'HWC':
canvas[t:b, l:r, :] += p
n_overlapping_patches[t:b, l:r, 0] += 1
else:
canvas[:, t:b, l:r] += p
n_overlapping_patches[0, t:b, l:r] += 1
# compute average
canvas = np.divide(canvas, n_overlapping_patches, where=(n_overlapping_patches != 0))
return canvas
def segment(img, model, patch_size=512, stride=256, scaling_factor=1., rotate=False, device=None, batch_size=16, verbose=False):
"""Segment an RGB image by using a segmentation model. Returns a probability
map (and performance metrics, if requested)"""
# some checks
assert isinstance(img, np.ndarray), f"Input must be a numpy array. Got {type(img)}"
assert img.shape[0] in [3,4], f"Input image must be formatted as CHW, with C = 3,4. Got a shape of {img.shape}"
assert img.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {img.dtype}"
# prepare model for evaluation
model = model.to(device)
model.eval()
# prepare alpha channel
original_shape = img.shape
if img.shape[0] == 3:
# create dummy alpha channel
alpha = np.full(original_shape[1:], 255, dtype=np.uint8)
else:
# extract alpha channel
img, alpha = img[:3], img[3]
# resize image
img = resize(img, scaling_factor=scaling_factor)
# pad image
pad_t, pad_b, pad_l, pad_r = minimum_needed_padding(img.shape[1:], patch_size, stride)
padded_img = pad(img, pad=(pad_t, pad_b, pad_l, pad_r))
padded_shape = padded_img.shape
# extract patches indexes
patches_idx = extract_patches(padded_img, patch_size=patch_size, stride=stride)
### segment
masks = []
masks_idx = []
batch = []
for i, p_idx in enumerate(tqdm(patches_idx, disable=not verbose, desc="Predicting...", total=len(patches_idx))):
t, b, l, r = p_idx
# extract patch
patch = padded_img[:, t:b, l:r]
# consider patch only if it is valid (i.e. not all black or all white)
if np.any(patch != 0) and np.any(patch != 255):
# convert patch to torch.tensor with float32 values in [0,1] (as required by torch)
patch = torch.tensor(patch).float() / 255.
# normalize patch with ImageNet mean and std
patch = (patch - torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)) / torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
# add patch to batch
batch.append(patch)
masks_idx.append(p_idx)
# (optional) for each patch extracted, consider also its rotated versions
if rotate:
for rot in range(1,4):
patch = torch.rot90(patch, rot, dims=[1,2])
batch.append(patch)
masks_idx.append(p_idx)
# if the batch is full, perform prediction
if len(batch) >= batch_size or i == len(patches_idx)-1:
# move batch to GPU
batch = torch.stack(batch).to(device)
# perform prediction
out = segment_batch(batch, model)
# append predictions to masks
masks.append(out.cpu().numpy())
# reset batch
batch = []
# concatenate predictions
masks = np.concatenate(masks) # (n_patches, 1, H, W)
# merge patches
mask = merge_patches(masks, masks_idx, rotate=rotate, canvas_shape=padded_shape[1:]) # (1, H, W)
# undo padding
mask = mask[:, pad_t:padded_shape[1]-pad_b, pad_l:padded_shape[2]-pad_r]
# resize mask to original shape
mask = resize(mask, shape=original_shape[1:])
# apply alpha channel, i.e. set to -1 the pixels where alpha is 0
mask = np.where(alpha == 0, -1, mask)
return mask.squeeze()
def sliding_window_avg_pooling(img, window, granularity, alpha=None, min_nonblank_pixels=0., normalize=False, return_min_max=False, verbose=False):
assert isinstance(img, np.ndarray), f'Input image must be a numpy array. Got {type(img)}'
assert img.shape[2] == 1, f'Input image must be formatted as HWC, with C = 1. Got a shape of {img.shape}'
# check if alpha channel was given, and cast it to np.float32 with values in [0,1]
if alpha is not None:
assert isinstance(alpha, np.ndarray), f'Alpha channel must be a numpy array. Got {type(alpha)}'
assert alpha.shape[2] == 1, f'Alpha channel must be formatted as HWC, with C = 1. Got a shape of {alpha.shape}'
assert img.shape == alpha.shape, f'The shape of input image {img.shape} and alpha channel {alpha.shape} do not match'
if alpha.dtype == np.uint8:
alpha = (alpha / 255).astype(np.float32)
elif alpha.dtype == bool:
alpha = alpha.astype(np.float32)
else:
alpha = np.ones_like(img)
# extract patches
patches, patches_idx = extract_patches(img, patch_size=window, stride=granularity, order='HWC', only_return_idx=False)
patches_alpha, _ = extract_patches(alpha, patch_size=window, stride=granularity, order='HWC', only_return_idx=False)
# keep only patches with more than min_nonblank_pixels
kept_patches = []
for i, p_a in tqdm(enumerate(patches_alpha), total=len(patches), disable=not verbose):
if p_a.sum() > min_nonblank_pixels * window**2:
kept_patches.append(i)
patches = [patches[i] for i in kept_patches]
patches_idx = [patches_idx[i] for i in kept_patches]
patches_alpha = [patches_alpha[i] for i in kept_patches]
# compute average patch value (i.e. density inside the patch)
patches_density = [np.full_like(p_a, (p * p_a).sum() / p_a.sum()) for p, p_a in zip(patches, patches_alpha)]
# merge patches
pooled_img = merge_patches(patches_density, patches_idx, canvas_shape=img.shape[:2], order='HWC')
# apply alpha
pooled_img = pooled_img * alpha
if normalize:
# [0,1]-normalize
pooled_img_min = pooled_img.min()
pooled_img_max = pooled_img.max()
pooled_img = (pooled_img - pooled_img_min) / (pooled_img_max - pooled_img_min)
if return_min_max:
return pooled_img, pooled_img_min, pooled_img_max
return pooled_img
def compute_vndvi(image, mask, dilate_rows=True, window_size=360):
assert image.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {image.dtype}"
assert mask.dtype == np.uint8, f"Input mask must be a numpy array with dtype np.uint8. Got {mask.dtype}"
# CHW -> HWC
image = image.transpose(1,2,0)
# extract channels
_image = image.astype(np.float32) / 255 # convert to float32 in [0,1]
R, G, B = _image[:,:,0], _image[:,:,1], _image[:,:,2]
# to avoid division by 0 due to negative power, we replace 0 with 1 in R and B channels
R = np.where(R == 0, 1, R)
B = np.where(B == 0, 1, B)
# compute vndvi
vndvi = 0.5268 * (R**(-0.1294) * G**(0.3389) * B**(-0.3118))
# clip values to [0,1]
vndvi = np.clip(vndvi, 0, 1)
# compute vndvi rows heatmap
#vndvi_rows = np.where(mask == 255, vndvi, np.nan)
# compute vndvi interrows heatmap
#vndvi_interrows = np.where(mask == 0, vndvi, np.nan)
# compute 10th and 90th percentile on whole vineyard vndvi heatmap
vndvi_perc10, vndvi_perc90 = np.percentile(vndvi[mask != 1], [10,90]) # mask is 1 for nodata, 0 or 255 for valid pixels
# clip values between 10th and 90th percentile
vndvi_clipped = np.clip(vndvi, vndvi_perc10, vndvi_perc90)
# perform sliding window average pooling to smooth the heatmap
# NB: the window takes into account only the rows
vndvi_rows_clipped_pooled = sliding_window_avg_pooling(
np.where(mask == 255, vndvi_clipped, 0)[...,None],
window = int(window_size / 4),
granularity = 10,
alpha = (mask == 255)[...,None],
min_nonblank_pixels = 0.0,
)
# same, but for interrows
vndvi_interrows_clipped_pooled = sliding_window_avg_pooling(
np.where(mask == 0, vndvi_clipped, 0)[...,None],
window = int(window_size / 4),
granularity = 10,
alpha = (mask == 0)[...,None],
min_nonblank_pixels = 0.0,
)
# apply dilation to rows mask
dilate_rows = True
if dilate_rows:
dil_factor = int(window_size / 60)
mask_rows_dilated = grey_dilation(mask == 255, size=(dil_factor,dil_factor))
vndvi_rows_clipped_pooled_dilated = grey_dilation(vndvi_rows_clipped_pooled, size=(dil_factor,dil_factor,1))
# for visualization purposes, normalize with vndvi_perc10 and
# vndvi_perc90 (because we want vndvi_perc10 to be the first color of
# the colormap and vndvi_perc90 to be the last)
vndvi_rows_clipped_pooled_normalized = (vndvi_rows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
vndvi_rows_clipped_pooled_dilated_normalized = (vndvi_rows_clipped_pooled_dilated - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
vndvi_interrows_clipped_pooled_normalized = (vndvi_interrows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
# for visualization
vndvi_rows_img = alpha_composite(
image,
vndvi_rows_clipped_pooled_dilated_normalized if dilate_rows else vndvi_rows_clipped_pooled_normalized,
opacity = 1.0,
colormap = 'RdYlGn',
alpha_image = np.zeros_like(image[:,:,[0]]),
alpha_mask = mask_rows_dilated[...,None] if dilate_rows else (mask == 255)[...,None],
)
vndvi_interrows_img = alpha_composite(
image,
vndvi_interrows_clipped_pooled_normalized,
opacity = 1.0,
colormap = 'RdYlGn',
alpha_image = np.zeros_like(image[:,:,[0]]),
alpha_mask = (mask == 0)[...,None],
)
# add colorbar
fig_rows, ax = plt.subplots(1, 1, figsize=(10, 10))
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.15)
ax.imshow(vndvi_rows_img)
fig_rows.colorbar(
mappable = mpl.cm.ScalarMappable(
norm = mpl.colors.Normalize(
vmin = vndvi_perc10,
vmax = vndvi_perc90),
cmap = 'RdYlGn'),
cax = cax,
orientation = 'vertical',
label = 'vNDVI',
shrink = 1)
fig_interrows, ax = plt.subplots(1, 1, figsize=(10, 10))
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.15)
ax.imshow(vndvi_interrows_img)
fig_interrows.colorbar(
mappable = mpl.cm.ScalarMappable(
norm = mpl.colors.Normalize(
vmin = vndvi_perc10,
vmax = vndvi_perc90),
cmap = 'RdYlGn'),
cax = cax,
orientation = 'vertical',
label = 'vNDVI',
shrink = 1)
return fig_rows, fig_interrows
def compute_vdi(image, mask, window_size=360):
assert image.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {image.dtype}"
assert mask.dtype == np.uint8, f"Input mask must be a numpy array with dtype np.uint8. Got {mask.dtype}"
# CHW -> HWC
image = image.transpose(1,2,0)
# compute vdi
vdi, vdi_min, vdi_max = sliding_window_avg_pooling(
(mask == 255)[...,None],
window = window_size,
granularity = 10,
alpha = (mask != 1)[...,None], # mask is 1 for nodata, 0 or 255 for valid pixels
min_nonblank_pixels = 0.9,
normalize=True,
return_min_max=True
)
# for visualization
vdi_img = alpha_composite(
image,
vdi,
opacity = 0.5,
colormap = 'jet_r',
alpha_image = (mask != 1)[...,None],
alpha_mask = (mask != 1)[...,None],
)
# add colorbar
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.15)
ax.imshow(vdi_img)
fig.colorbar(
mappable = mpl.cm.ScalarMappable(
norm = mpl.colors.Normalize(
vmin = vdi_min,
vmax = vdi_max),
cmap = 'jet_r'),
cax = cax,
orientation = 'vertical',
label = 'VDI',
shrink = 1)
return fig