Spaces:
Running
Running
Commit
Β·
b53fda4
1
Parent(s):
e7e9077
app first commit
Browse files- README.md +2 -2
- app.py +138 -0
- lib/utils.py +521 -0
- lib/viz_utils.py +125 -0
- model/growseg.pt +3 -0
- requirements.txt +11 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Growseg Demo
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import SegformerForSemanticSegmentation
|
5 |
+
from loguru import logger
|
6 |
+
import rasterio as rio
|
7 |
+
from lib.utils import segment, compute_vndvi, compute_vdi
|
8 |
+
import os
|
9 |
+
import os.path as osp
|
10 |
+
|
11 |
+
# set temp dir for gradio
|
12 |
+
os.environ["GRADIO_TEMP_DIR"] = "/nfs/home/monopoli/VITIGEOSS/gaia-growseg-demo/temp"
|
13 |
+
|
14 |
+
# set device
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
logger.info(f'Using device: {device}')
|
17 |
+
|
18 |
+
# load model architecture
|
19 |
+
logger.info('Loading model architecture...')
|
20 |
+
model = SegformerForSemanticSegmentation.from_pretrained(
|
21 |
+
'nvidia/mit-b5',
|
22 |
+
num_labels = 1, # binary segmentation
|
23 |
+
num_channels = 3, # RGB
|
24 |
+
id2label = {1: 'vine'},
|
25 |
+
label2id = {'vine': 1},
|
26 |
+
)
|
27 |
+
|
28 |
+
# load model weights
|
29 |
+
logger.info('Loading model weights...')
|
30 |
+
device = torch.device(f'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
31 |
+
model.load_state_dict(torch.load(f"model/growseg.pt", map_location=device))
|
32 |
+
model = model.to(device)
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
|
36 |
+
def main(input, output, patch_size=512, stride=256, scaling_factor=1., rotate=False, batch_size=16, verbose=False, return_vndvi=True, return_vdi=True, window_size=360):
|
37 |
+
assert osp.splitext(output)[1].lower() in ['.tif', '.tiff', '.png', '.jpg', '.jpeg'], 'Output file format not supported'
|
38 |
+
assert osp.splitext(input)[1].lower() == osp.splitext(output)[1].lower(), f'Input and output file formats must match. Got {osp.splitext(input)[1].lower()} and {osp.splitext(output)[1].lower()} respectively.'
|
39 |
+
|
40 |
+
# read image
|
41 |
+
logger.info(f'Reading image {input}...')
|
42 |
+
with rio.open(input, 'r') as src:
|
43 |
+
image = src.read()
|
44 |
+
profile = src.profile
|
45 |
+
shape = src.shape
|
46 |
+
|
47 |
+
if profile['driver'] == 'GTiff':
|
48 |
+
gsd = profile['transform'][0] # ground sampling distance (NB: valid only if image is a GeoTIFF)
|
49 |
+
else:
|
50 |
+
gsd = None
|
51 |
+
|
52 |
+
# Growseg works best on orthoimages with gsd in [1, 1.7] cm/px. You may want to
|
53 |
+
# specify a scaling factor different from 1 if your image has a different gsd.
|
54 |
+
# E.g.: SCALING_FACTOR = gsd / 1.5
|
55 |
+
|
56 |
+
# segment
|
57 |
+
logger.info('Segmenting image...')
|
58 |
+
mask = segment(
|
59 |
+
image,
|
60 |
+
model,
|
61 |
+
patch_size=patch_size,
|
62 |
+
stride=stride,
|
63 |
+
scaling_factor=scaling_factor,
|
64 |
+
rotate=rotate,
|
65 |
+
device=device,
|
66 |
+
batch_size=batch_size,
|
67 |
+
verbose=verbose
|
68 |
+
) # mask is a HxW float32 array in [0, 1]
|
69 |
+
|
70 |
+
# apply threshold on confidence scores
|
71 |
+
alpha = (mask == -1)
|
72 |
+
mask = (mask > 0.5)
|
73 |
+
|
74 |
+
# convert to uint8
|
75 |
+
mask = (mask * 255).astype(np.uint8)
|
76 |
+
|
77 |
+
# set nodata pixels to 1
|
78 |
+
mask[alpha] = 1
|
79 |
+
|
80 |
+
# if requested, compute additional
|
81 |
+
if return_vndvi:
|
82 |
+
logger.info('Computing VNDVI...')
|
83 |
+
vndvi_rows_fig, vndvi_interrows_fig = compute_vndvi(image, mask, window_size)
|
84 |
+
else:
|
85 |
+
vndvi_rows_fig = vndvi_interrows_fig = None
|
86 |
+
|
87 |
+
if return_vdi:
|
88 |
+
logger.info('Computing VDI...')
|
89 |
+
vdi_fig = compute_vdi(image, mask, window_size)
|
90 |
+
else:
|
91 |
+
vdi_fig = None
|
92 |
+
|
93 |
+
# save mask
|
94 |
+
"""
|
95 |
+
logger.info('Saving mask...')
|
96 |
+
profile.update(
|
97 |
+
dtype=rio.uint8,
|
98 |
+
count=1,
|
99 |
+
compress='lzw',
|
100 |
+
)
|
101 |
+
|
102 |
+
with rio.open(output, 'w', **profile) as dst:
|
103 |
+
dst.write(mask[None, ...])
|
104 |
+
|
105 |
+
logger.info(f'Mask saved to {output}')
|
106 |
+
"""
|
107 |
+
|
108 |
+
# return mask and eventually additional outputs
|
109 |
+
return image.transpose(1,2,0), mask, vndvi_rows_fig, vndvi_interrows_fig, vdi_fig
|
110 |
+
|
111 |
+
demo = gr.Interface(
|
112 |
+
fn=main,
|
113 |
+
inputs=[
|
114 |
+
gr.File(type='filepath', file_types=['image','.tif','.tiff'], label='Input image path'),
|
115 |
+
gr.Textbox(value='mask.tif', label='Output mask path'),
|
116 |
+
gr.Slider(minimum=128, maximum=512, value=512, step=128, label='Patch size'),
|
117 |
+
gr.Slider(minimum=0, maximum=256, value=256, step=64, label='Stride'),
|
118 |
+
gr.Slider(minimum=0.1, maximum=10, value=1, step=0.05, label='Scaling factor'),
|
119 |
+
gr.Checkbox(value=False, label='Rotate patches'),
|
120 |
+
gr.Slider(minimum=4, maximum=128, value=16, step=4, label='Batch size'),
|
121 |
+
gr.Checkbox(value=False, label='Verbose'),
|
122 |
+
gr.Checkbox(value=True, label='Return VNDVI map'),
|
123 |
+
gr.Checkbox(value=True, label='Return VDI map'),
|
124 |
+
gr.Slider(minimum=10, maximum=600, value=360, step=1, label='Moving window size for computing vNDVI/VDI (suggestion: inversely proportional to the GSD [px/m])'),
|
125 |
+
],
|
126 |
+
outputs=[
|
127 |
+
gr.Image(type='numpy', format='png', label='Input image'),
|
128 |
+
gr.Image(type='numpy', format='png', label='Predicted mask'),
|
129 |
+
gr.Plot(format='png', label='VNDVI rows (dilated for visibility)'),
|
130 |
+
gr.Plot(format='png', label='VNDVI interrows'),
|
131 |
+
gr.Plot(format='png', label='VDI'),
|
132 |
+
], # NB: if one of the outputs is None, it will not be displayed in the interface (https://github.com/gradio-app/gradio/issues/500#issuecomment-1046877766)
|
133 |
+
title='Growseg',
|
134 |
+
description='Segment vineyards in orthoimages',
|
135 |
+
delete_cache=[3600,3600],
|
136 |
+
)
|
137 |
+
|
138 |
+
demo.launch(share=True)
|
lib/utils.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import rasterio
|
4 |
+
import cv2
|
5 |
+
from transformers import SegformerForSemanticSegmentation
|
6 |
+
from tqdm import tqdm
|
7 |
+
from PIL import Image
|
8 |
+
from scipy.ndimage import grey_dilation
|
9 |
+
import matplotlib as mpl
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
12 |
+
from .viz_utils import alpha_composite
|
13 |
+
|
14 |
+
|
15 |
+
def read_raster(path, order='CHW'):
|
16 |
+
"""Read a raster file and return a numpy array"""
|
17 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
18 |
+
|
19 |
+
with rasterio.open(path) as src:
|
20 |
+
img = src.read()
|
21 |
+
|
22 |
+
if order == 'HWC':
|
23 |
+
img = np.moveaxis(img, 0, -1)
|
24 |
+
|
25 |
+
return img
|
26 |
+
|
27 |
+
def write_raster(path, img, profile, order='CHW'):
|
28 |
+
"""Write a numpy array to a raster file"""
|
29 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
30 |
+
|
31 |
+
if order == 'HWC':
|
32 |
+
img = np.moveaxis(img, -1, 0)
|
33 |
+
|
34 |
+
with rasterio.open(path, 'w', **profile) as dst:
|
35 |
+
dst.write(img)
|
36 |
+
|
37 |
+
|
38 |
+
def resize(img, shape=None, scaling_factor=1., order='CHW'):
|
39 |
+
"""Resize an image by a given scaling factor"""
|
40 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
41 |
+
assert shape is None or scaling_factor == 1., "Got both shape and scaling_factor. Please provide only one of them"
|
42 |
+
|
43 |
+
# resize image
|
44 |
+
if order == 'CHW':
|
45 |
+
img = np.moveaxis(img, 0, -1) # CHW -> HWC
|
46 |
+
|
47 |
+
if shape is not None:
|
48 |
+
img = cv2.resize(img, shape[::-1], interpolation=cv2.INTER_LINEAR)
|
49 |
+
else:
|
50 |
+
img = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR)
|
51 |
+
|
52 |
+
# NB: cv2.resize returns a HW image if the input image is HW1: restore the C dimension
|
53 |
+
if len(img.shape) == 2:
|
54 |
+
img = img[..., None]
|
55 |
+
|
56 |
+
if order == 'CHW':
|
57 |
+
img = np.moveaxis(img, -1, 0) # HWC -> CHW
|
58 |
+
|
59 |
+
return img
|
60 |
+
|
61 |
+
|
62 |
+
def minimum_needed_padding(img_size, patch_size: int, stride: int):
|
63 |
+
"""
|
64 |
+
Compute the minimum padding needed to make an image divisible by a patch size with a given stride.
|
65 |
+
Args:
|
66 |
+
image_shape (tuple): the shape (H,W) of the image tensor
|
67 |
+
patch_size (int): the size of the patches to extract
|
68 |
+
stride (int): the stride to use when extracting patches
|
69 |
+
Returns:
|
70 |
+
tuple: the padding needed to make the image tensor divisible by the patch size with the given stride
|
71 |
+
"""
|
72 |
+
|
73 |
+
img_size = np.array(img_size)
|
74 |
+
pad = np.where(
|
75 |
+
img_size <= patch_size,
|
76 |
+
(patch_size - img_size) % patch_size, # the % patch_size is to handle the case img_size = (0,0)
|
77 |
+
(stride - (img_size - patch_size)) % stride
|
78 |
+
)
|
79 |
+
pad_t, pad_l = pad // 2
|
80 |
+
pad_b, pad_r = pad[0] - pad_t, pad[1] - pad_l
|
81 |
+
|
82 |
+
return pad_t, pad_b, pad_l, pad_r
|
83 |
+
|
84 |
+
|
85 |
+
def pad(img, pad, order='CHW'):
|
86 |
+
"""Pad an image by the given pad values, in the format (pad_t, pad_b, pad_l, pad_r)"""
|
87 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
88 |
+
|
89 |
+
pad_t, pad_b, pad_l, pad_r = pad
|
90 |
+
|
91 |
+
# pad image
|
92 |
+
if order == 'HWC':
|
93 |
+
padded_img = np.pad(img, ((pad_t,pad_b), (pad_l,pad_r), (0,0)), mode='constant', constant_values=0) # can also try mode='reflect'
|
94 |
+
else:
|
95 |
+
padded_img = np.pad(img, ((0,0), (pad_t,pad_b), (pad_l,pad_r)), mode='constant', constant_values=0) # can also try mode='reflect'
|
96 |
+
|
97 |
+
if isinstance(img, torch.Tensor):
|
98 |
+
padded_img = torch.tensor(padded_img)
|
99 |
+
|
100 |
+
return padded_img
|
101 |
+
|
102 |
+
|
103 |
+
def extract_patches(img, patch_size=512, stride=256, order='CHW', only_return_idx=True):
|
104 |
+
"""Extract patches from an image, in the format (h_start, h_end, w_start, w_end)"""
|
105 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
106 |
+
|
107 |
+
if order == 'HWC':
|
108 |
+
H, W = img.shape[:2]
|
109 |
+
else:
|
110 |
+
H, W = img.shape[1:]
|
111 |
+
|
112 |
+
# compute the number of patches
|
113 |
+
n_patches = ((H - patch_size) // stride + 1) * ((W - patch_size) // stride + 1)
|
114 |
+
|
115 |
+
# extract patches
|
116 |
+
patches = []
|
117 |
+
patches_idx = []
|
118 |
+
for i in range(0, H-patch_size+1, stride):
|
119 |
+
for j in range(0, W-patch_size+1, stride):
|
120 |
+
|
121 |
+
patches_idx.append((i, i+patch_size, j, j+patch_size))
|
122 |
+
|
123 |
+
if not only_return_idx:
|
124 |
+
if order == 'HWC':
|
125 |
+
patch = img[i:i+patch_size, j:j+patch_size, :]
|
126 |
+
else:
|
127 |
+
patch = img[:, i:i+patch_size, j:j+patch_size]
|
128 |
+
patches.append(patch)
|
129 |
+
|
130 |
+
if only_return_idx:
|
131 |
+
return patches_idx
|
132 |
+
return patches, patches_idx
|
133 |
+
|
134 |
+
|
135 |
+
def segment_batch(batch, model):
|
136 |
+
|
137 |
+
# perform prediction
|
138 |
+
with torch.no_grad():
|
139 |
+
out = model(batch) # (n_patches, 1, H, W) logits
|
140 |
+
if isinstance(model, SegformerForSemanticSegmentation):
|
141 |
+
out = upsample(out.logits, size=batch.shape[-2:])
|
142 |
+
|
143 |
+
# apply sigmoid
|
144 |
+
out = torch.sigmoid(out) # logits -> confidence scores
|
145 |
+
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
def upsample(x, size):
|
150 |
+
"""Upsample a 3D/4D/5D tensor"""
|
151 |
+
return torch.nn.functional.interpolate(x, size=size, mode='bilinear', align_corners=False)
|
152 |
+
|
153 |
+
|
154 |
+
def merge_patches(patches, patches_idx, rotate=False, canvas_shape=None, order='CHW'): # TODO
|
155 |
+
"""Merge patches into a single image"""
|
156 |
+
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
|
157 |
+
if rotate:
|
158 |
+
axes_to_rotate = (0,1) if order == 'HWC' else (1,2)
|
159 |
+
patches = [np.rot90(p, -i, axes=axes_to_rotate) for i,p in enumerate(patches)]
|
160 |
+
else:
|
161 |
+
assert len(patches) == len(patches_idx), f"Got {len(patches)} patches and {len(patches_idx)} indexes"
|
162 |
+
|
163 |
+
# if canvas_shape is None, infer it from patches_idx
|
164 |
+
if canvas_shape is None:
|
165 |
+
patches_idx_zipped = list(zip(*patches_idx))
|
166 |
+
canvas_H = max(patches_idx_zipped[1])
|
167 |
+
canvas_W = max(patches_idx_zipped[3])
|
168 |
+
else:
|
169 |
+
canvas_H, canvas_W = canvas_shape
|
170 |
+
|
171 |
+
# initialize canvas
|
172 |
+
dtype = patches[0].dtype
|
173 |
+
if order == 'HWC':
|
174 |
+
canvas_C = patches[0].shape[-1]
|
175 |
+
canvas = np.zeros((canvas_H, canvas_W, canvas_C), dtype=dtype) # HWC
|
176 |
+
n_overlapping_patches = np.zeros((canvas_H, canvas_W, 1))
|
177 |
+
else:
|
178 |
+
canvas_C = patches[0].shape[0]
|
179 |
+
canvas = np.zeros((canvas_C, canvas_H, canvas_W, ), dtype=dtype) # CHW
|
180 |
+
n_overlapping_patches = np.zeros((1, canvas_H, canvas_W))
|
181 |
+
|
182 |
+
# merge patches
|
183 |
+
for p, (t,b,l,r) in zip(patches, patches_idx):
|
184 |
+
if order == 'HWC':
|
185 |
+
canvas[t:b, l:r, :] += p
|
186 |
+
n_overlapping_patches[t:b, l:r, 0] += 1
|
187 |
+
else:
|
188 |
+
canvas[:, t:b, l:r] += p
|
189 |
+
n_overlapping_patches[0, t:b, l:r] += 1
|
190 |
+
|
191 |
+
|
192 |
+
# compute average
|
193 |
+
canvas = np.divide(canvas, n_overlapping_patches, where=(n_overlapping_patches != 0))
|
194 |
+
|
195 |
+
return canvas
|
196 |
+
|
197 |
+
|
198 |
+
def segment(img, model, patch_size=512, stride=256, scaling_factor=1., rotate=False, device=None, batch_size=16, verbose=False):
|
199 |
+
"""Segment an RGB image by using a segmentation model. Returns a probability
|
200 |
+
map (and performance metrics, if requested)"""
|
201 |
+
|
202 |
+
# some checks
|
203 |
+
assert isinstance(img, np.ndarray), f"Input must be a numpy array. Got {type(img)}"
|
204 |
+
assert img.shape[0] in [3,4], f"Input image must be formatted as CHW, with C = 3,4. Got a shape of {img.shape}"
|
205 |
+
assert img.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {img.dtype}"
|
206 |
+
|
207 |
+
# prepare model for evaluation
|
208 |
+
model = model.to(device)
|
209 |
+
model.eval()
|
210 |
+
|
211 |
+
# prepare alpha channel
|
212 |
+
original_shape = img.shape
|
213 |
+
if img.shape[0] == 3:
|
214 |
+
# create dummy alpha channel
|
215 |
+
alpha = np.full(original_shape[1:], 255, dtype=np.uint8)
|
216 |
+
else:
|
217 |
+
# extract alpha channel
|
218 |
+
img, alpha = img[:3], img[3]
|
219 |
+
|
220 |
+
# resize image
|
221 |
+
img = resize(img, scaling_factor=scaling_factor)
|
222 |
+
|
223 |
+
# pad image
|
224 |
+
pad_t, pad_b, pad_l, pad_r = minimum_needed_padding(img.shape[1:], patch_size, stride)
|
225 |
+
padded_img = pad(img, pad=(pad_t, pad_b, pad_l, pad_r))
|
226 |
+
padded_shape = padded_img.shape
|
227 |
+
|
228 |
+
# extract patches indexes
|
229 |
+
patches_idx = extract_patches(padded_img, patch_size=patch_size, stride=stride)
|
230 |
+
|
231 |
+
### segment
|
232 |
+
masks = []
|
233 |
+
masks_idx = []
|
234 |
+
|
235 |
+
batch = []
|
236 |
+
for i, p_idx in enumerate(tqdm(patches_idx, disable=not verbose, desc="Predicting...", total=len(patches_idx))):
|
237 |
+
t, b, l, r = p_idx
|
238 |
+
|
239 |
+
# extract patch
|
240 |
+
patch = padded_img[:, t:b, l:r]
|
241 |
+
|
242 |
+
# consider patch only if it is valid (i.e. not all black or all white)
|
243 |
+
if np.any(patch != 0) and np.any(patch != 255):
|
244 |
+
|
245 |
+
# convert patch to torch.tensor with float32 values in [0,1] (as required by torch)
|
246 |
+
patch = torch.tensor(patch).float() / 255.
|
247 |
+
|
248 |
+
# normalize patch with ImageNet mean and std
|
249 |
+
patch = (patch - torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)) / torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
|
250 |
+
|
251 |
+
# add patch to batch
|
252 |
+
batch.append(patch)
|
253 |
+
masks_idx.append(p_idx)
|
254 |
+
|
255 |
+
# (optional) for each patch extracted, consider also its rotated versions
|
256 |
+
if rotate:
|
257 |
+
for rot in range(1,4):
|
258 |
+
patch = torch.rot90(patch, rot, dims=[1,2])
|
259 |
+
batch.append(patch)
|
260 |
+
masks_idx.append(p_idx)
|
261 |
+
|
262 |
+
# if the batch is full, perform prediction
|
263 |
+
if len(batch) >= batch_size or i == len(patches_idx)-1:
|
264 |
+
|
265 |
+
# move batch to GPU
|
266 |
+
batch = torch.stack(batch).to(device)
|
267 |
+
|
268 |
+
# perform prediction
|
269 |
+
out = segment_batch(batch, model)
|
270 |
+
|
271 |
+
# append predictions to masks
|
272 |
+
masks.append(out.cpu().numpy())
|
273 |
+
|
274 |
+
# reset batch
|
275 |
+
batch = []
|
276 |
+
|
277 |
+
# concatenate predictions
|
278 |
+
masks = np.concatenate(masks) # (n_patches, 1, H, W)
|
279 |
+
|
280 |
+
# merge patches
|
281 |
+
mask = merge_patches(masks, masks_idx, rotate=rotate, canvas_shape=padded_shape[1:]) # (1, H, W)
|
282 |
+
|
283 |
+
# undo padding
|
284 |
+
mask = mask[:, pad_t:padded_shape[1]-pad_b, pad_l:padded_shape[2]-pad_r]
|
285 |
+
|
286 |
+
# resize mask to original shape
|
287 |
+
mask = resize(mask, shape=original_shape[1:])
|
288 |
+
|
289 |
+
# apply alpha channel, i.e. set to -1 the pixels where alpha is 0
|
290 |
+
mask = np.where(alpha == 0, -1, mask)
|
291 |
+
|
292 |
+
return mask.squeeze()
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
def sliding_window_avg_pooling(img, window, granularity, alpha=None, min_nonblank_pixels=0., normalize=False, return_min_max=False, verbose=False):
|
308 |
+
assert isinstance(img, np.ndarray), f'Input image must be a numpy array. Got {type(img)}'
|
309 |
+
assert img.shape[2] == 1, f'Input image must be formatted as HWC, with C = 1. Got a shape of {img.shape}'
|
310 |
+
|
311 |
+
# check if alpha channel was given, and cast it to np.float32 with values in [0,1]
|
312 |
+
if alpha is not None:
|
313 |
+
assert isinstance(alpha, np.ndarray), f'Alpha channel must be a numpy array. Got {type(alpha)}'
|
314 |
+
assert alpha.shape[2] == 1, f'Alpha channel must be formatted as HWC, with C = 1. Got a shape of {alpha.shape}'
|
315 |
+
assert img.shape == alpha.shape, f'The shape of input image {img.shape} and alpha channel {alpha.shape} do not match'
|
316 |
+
if alpha.dtype == np.uint8:
|
317 |
+
alpha = (alpha / 255).astype(np.float32)
|
318 |
+
elif alpha.dtype == bool:
|
319 |
+
alpha = alpha.astype(np.float32)
|
320 |
+
else:
|
321 |
+
alpha = np.ones_like(img)
|
322 |
+
|
323 |
+
# extract patches
|
324 |
+
patches, patches_idx = extract_patches(img, patch_size=window, stride=granularity, order='HWC', only_return_idx=False)
|
325 |
+
patches_alpha, _ = extract_patches(alpha, patch_size=window, stride=granularity, order='HWC', only_return_idx=False)
|
326 |
+
|
327 |
+
# keep only patches with more than min_nonblank_pixels
|
328 |
+
kept_patches = []
|
329 |
+
for i, p_a in tqdm(enumerate(patches_alpha), total=len(patches), disable=not verbose):
|
330 |
+
if p_a.sum() > min_nonblank_pixels * window**2:
|
331 |
+
kept_patches.append(i)
|
332 |
+
patches = [patches[i] for i in kept_patches]
|
333 |
+
patches_idx = [patches_idx[i] for i in kept_patches]
|
334 |
+
patches_alpha = [patches_alpha[i] for i in kept_patches]
|
335 |
+
|
336 |
+
# compute average patch value (i.e. density inside the patch)
|
337 |
+
patches_density = [np.full_like(p_a, (p * p_a).sum() / p_a.sum()) for p, p_a in zip(patches, patches_alpha)]
|
338 |
+
|
339 |
+
# merge patches
|
340 |
+
pooled_img = merge_patches(patches_density, patches_idx, canvas_shape=img.shape[:2], order='HWC')
|
341 |
+
|
342 |
+
# apply alpha
|
343 |
+
pooled_img = pooled_img * alpha
|
344 |
+
|
345 |
+
if normalize:
|
346 |
+
# [0,1]-normalize
|
347 |
+
pooled_img_min = pooled_img.min()
|
348 |
+
pooled_img_max = pooled_img.max()
|
349 |
+
pooled_img = (pooled_img - pooled_img_min) / (pooled_img_max - pooled_img_min)
|
350 |
+
|
351 |
+
if return_min_max:
|
352 |
+
return pooled_img, pooled_img_min, pooled_img_max
|
353 |
+
|
354 |
+
return pooled_img
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
def compute_vndvi(image, mask, dilate_rows=True, window_size=360):
|
359 |
+
assert image.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {image.dtype}"
|
360 |
+
assert mask.dtype == np.uint8, f"Input mask must be a numpy array with dtype np.uint8. Got {mask.dtype}"
|
361 |
+
|
362 |
+
# CHW -> HWC
|
363 |
+
image = image.transpose(1,2,0)
|
364 |
+
|
365 |
+
# extract channels
|
366 |
+
_image = image.astype(np.float32) / 255 # convert to float32 in [0,1]
|
367 |
+
R, G, B = _image[:,:,0], _image[:,:,1], _image[:,:,2]
|
368 |
+
|
369 |
+
# to avoid division by 0 due to negative power, we replace 0 with 1 in R and B channels
|
370 |
+
R = np.where(R == 0, 1, R)
|
371 |
+
B = np.where(B == 0, 1, B)
|
372 |
+
|
373 |
+
# compute vndvi
|
374 |
+
vndvi = 0.5268 * (R**(-0.1294) * G**(0.3389) * B**(-0.3118))
|
375 |
+
|
376 |
+
# clip values to [0,1]
|
377 |
+
vndvi = np.clip(vndvi, 0, 1)
|
378 |
+
|
379 |
+
# compute vndvi rows heatmap
|
380 |
+
#vndvi_rows = np.where(mask == 255, vndvi, np.nan)
|
381 |
+
|
382 |
+
# compute vndvi interrows heatmap
|
383 |
+
#vndvi_interrows = np.where(mask == 0, vndvi, np.nan)
|
384 |
+
|
385 |
+
# compute 10th and 90th percentile on whole vineyard vndvi heatmap
|
386 |
+
vndvi_perc10, vndvi_perc90 = np.percentile(vndvi[mask != 1], [10,90]) # mask is 1 for nodata, 0 or 255 for valid pixels
|
387 |
+
|
388 |
+
# clip values between 10th and 90th percentile
|
389 |
+
vndvi_clipped = np.clip(vndvi, vndvi_perc10, vndvi_perc90)
|
390 |
+
|
391 |
+
# perform sliding window average pooling to smooth the heatmap
|
392 |
+
# NB: the window takes into account only the rows
|
393 |
+
vndvi_rows_clipped_pooled = sliding_window_avg_pooling(
|
394 |
+
np.where(mask == 255, vndvi_clipped, 0)[...,None],
|
395 |
+
window = int(window_size / 4),
|
396 |
+
granularity = 10,
|
397 |
+
alpha = (mask == 255)[...,None],
|
398 |
+
min_nonblank_pixels = 0.0,
|
399 |
+
)
|
400 |
+
# same, but for interrows
|
401 |
+
vndvi_interrows_clipped_pooled = sliding_window_avg_pooling(
|
402 |
+
np.where(mask == 0, vndvi_clipped, 0)[...,None],
|
403 |
+
window = int(window_size / 4),
|
404 |
+
granularity = 10,
|
405 |
+
alpha = (mask == 0)[...,None],
|
406 |
+
min_nonblank_pixels = 0.0,
|
407 |
+
)
|
408 |
+
|
409 |
+
# apply dilation to rows mask
|
410 |
+
dilate_rows = True
|
411 |
+
if dilate_rows:
|
412 |
+
dil_factor = int(window_size / 60)
|
413 |
+
mask_rows_dilated = grey_dilation(mask == 255, size=(dil_factor,dil_factor))
|
414 |
+
vndvi_rows_clipped_pooled_dilated = grey_dilation(vndvi_rows_clipped_pooled, size=(dil_factor,dil_factor,1))
|
415 |
+
|
416 |
+
# for visualization purposes, normalize with vndvi_perc10 and
|
417 |
+
# vndvi_perc90 (because we want vndvi_perc10 to be the first color of
|
418 |
+
# the colormap and vndvi_perc90 to be the last)
|
419 |
+
vndvi_rows_clipped_pooled_normalized = (vndvi_rows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
|
420 |
+
vndvi_rows_clipped_pooled_dilated_normalized = (vndvi_rows_clipped_pooled_dilated - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
|
421 |
+
vndvi_interrows_clipped_pooled_normalized = (vndvi_interrows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
|
422 |
+
|
423 |
+
# for visualization
|
424 |
+
vndvi_rows_img = alpha_composite(
|
425 |
+
image,
|
426 |
+
vndvi_rows_clipped_pooled_dilated_normalized if dilate_rows else vndvi_rows_clipped_pooled_normalized,
|
427 |
+
opacity = 1.0,
|
428 |
+
colormap = 'RdYlGn',
|
429 |
+
alpha_image = np.zeros_like(image[:,:,[0]]),
|
430 |
+
alpha_mask = mask_rows_dilated[...,None] if dilate_rows else (mask == 255)[...,None],
|
431 |
+
)
|
432 |
+
|
433 |
+
vndvi_interrows_img = alpha_composite(
|
434 |
+
image,
|
435 |
+
vndvi_interrows_clipped_pooled_normalized,
|
436 |
+
opacity = 1.0,
|
437 |
+
colormap = 'RdYlGn',
|
438 |
+
alpha_image = np.zeros_like(image[:,:,[0]]),
|
439 |
+
alpha_mask = (mask == 0)[...,None],
|
440 |
+
)
|
441 |
+
|
442 |
+
# add colorbar
|
443 |
+
fig_rows, ax = plt.subplots(1, 1, figsize=(10, 10))
|
444 |
+
divider = make_axes_locatable(ax)
|
445 |
+
cax = divider.append_axes('right', size='5%', pad=0.15)
|
446 |
+
ax.imshow(vndvi_rows_img)
|
447 |
+
fig_rows.colorbar(
|
448 |
+
mappable = mpl.cm.ScalarMappable(
|
449 |
+
norm = mpl.colors.Normalize(
|
450 |
+
vmin = vndvi_perc10,
|
451 |
+
vmax = vndvi_perc90),
|
452 |
+
cmap = 'RdYlGn'),
|
453 |
+
cax = cax,
|
454 |
+
orientation = 'vertical',
|
455 |
+
label = 'vNDVI',
|
456 |
+
shrink = 1)
|
457 |
+
|
458 |
+
fig_interrows, ax = plt.subplots(1, 1, figsize=(10, 10))
|
459 |
+
divider = make_axes_locatable(ax)
|
460 |
+
cax = divider.append_axes('right', size='5%', pad=0.15)
|
461 |
+
ax.imshow(vndvi_interrows_img)
|
462 |
+
fig_interrows.colorbar(
|
463 |
+
mappable = mpl.cm.ScalarMappable(
|
464 |
+
norm = mpl.colors.Normalize(
|
465 |
+
vmin = vndvi_perc10,
|
466 |
+
vmax = vndvi_perc90),
|
467 |
+
cmap = 'RdYlGn'),
|
468 |
+
cax = cax,
|
469 |
+
orientation = 'vertical',
|
470 |
+
label = 'vNDVI',
|
471 |
+
shrink = 1)
|
472 |
+
|
473 |
+
return fig_rows, fig_interrows
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
def compute_vdi(image, mask, window_size=360):
|
478 |
+
assert image.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {image.dtype}"
|
479 |
+
assert mask.dtype == np.uint8, f"Input mask must be a numpy array with dtype np.uint8. Got {mask.dtype}"
|
480 |
+
|
481 |
+
# CHW -> HWC
|
482 |
+
image = image.transpose(1,2,0)
|
483 |
+
|
484 |
+
# compute vdi
|
485 |
+
vdi, vdi_min, vdi_max = sliding_window_avg_pooling(
|
486 |
+
(mask == 255)[...,None],
|
487 |
+
window = window_size,
|
488 |
+
granularity = 10,
|
489 |
+
alpha = (mask != 1)[...,None], # mask is 1 for nodata, 0 or 255 for valid pixels
|
490 |
+
min_nonblank_pixels = 0.9,
|
491 |
+
normalize=True,
|
492 |
+
return_min_max=True
|
493 |
+
)
|
494 |
+
|
495 |
+
# for visualization
|
496 |
+
vdi_img = alpha_composite(
|
497 |
+
image,
|
498 |
+
vdi,
|
499 |
+
opacity = 0.5,
|
500 |
+
colormap = 'jet_r',
|
501 |
+
alpha_image = (mask != 1)[...,None],
|
502 |
+
alpha_mask = (mask != 1)[...,None],
|
503 |
+
)
|
504 |
+
|
505 |
+
# add colorbar
|
506 |
+
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
|
507 |
+
divider = make_axes_locatable(ax)
|
508 |
+
cax = divider.append_axes('right', size='5%', pad=0.15)
|
509 |
+
ax.imshow(vdi_img)
|
510 |
+
fig.colorbar(
|
511 |
+
mappable = mpl.cm.ScalarMappable(
|
512 |
+
norm = mpl.colors.Normalize(
|
513 |
+
vmin = vdi_min,
|
514 |
+
vmax = vdi_max),
|
515 |
+
cmap = 'jet_r'),
|
516 |
+
cax = cax,
|
517 |
+
orientation = 'vertical',
|
518 |
+
label = 'VDI',
|
519 |
+
shrink = 1)
|
520 |
+
|
521 |
+
return fig
|
lib/viz_utils.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import functools
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import cmapy
|
6 |
+
from PIL import Image
|
7 |
+
import matplotlib
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# BUGFIX in cmapy.py
|
12 |
+
def cmap(cmap_name, rgb_order=False):
|
13 |
+
"""
|
14 |
+
Extract colormap color information as a LUT compatible with cv2.applyColormap().
|
15 |
+
Default channel order is BGR.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
cmap_name: string, name of the colormap.
|
19 |
+
rgb_order: boolean, if false or not set, the returned array will be in
|
20 |
+
BGR order (standard OpenCV format). If true, the order
|
21 |
+
will be RGB.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
A numpy array of type uint8 containing the colormap.
|
25 |
+
"""
|
26 |
+
|
27 |
+
c_map = matplotlib.colormaps.get_cmap(cmap_name)
|
28 |
+
rgba_data = matplotlib.cm.ScalarMappable(cmap=c_map).to_rgba(
|
29 |
+
np.arange(0, 1.0, 1.0 / 256.0), bytes=True
|
30 |
+
)
|
31 |
+
rgba_data = rgba_data[:, 0:-1].reshape((256, 1, 3))
|
32 |
+
|
33 |
+
# Convert to BGR (or RGB), uint8, for OpenCV.
|
34 |
+
cmap = np.zeros((256, 1, 3), np.uint8)
|
35 |
+
|
36 |
+
if not rgb_order:
|
37 |
+
cmap[:, :, :] = rgba_data[:, :, ::-1]
|
38 |
+
else:
|
39 |
+
cmap[:, :, :] = rgba_data[:, :, :]
|
40 |
+
|
41 |
+
return cmap
|
42 |
+
|
43 |
+
# If python 3, redefine cmap() to use lru_cache.
|
44 |
+
if sys.version_info > (3, 0):
|
45 |
+
cmap = functools.lru_cache(maxsize=200)(cmap)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
def alpha_composite(img, msk, opacity=0.5, colormap=None, alpha_image=None, alpha_mask=None, red_mask=False):
|
50 |
+
"""Alpha composite an RGBA image (img) and a grayscale mask (msk).
|
51 |
+
- If alpha_image is None, img's alpha channel is used (or, if not present,
|
52 |
+
initialized to all 255).
|
53 |
+
- If alpha_mask is None, msk is overlaid on img only where img's alpha
|
54 |
+
channel is not 0.
|
55 |
+
- If alpha_mask is not None, the above behavior is overridden and msk is
|
56 |
+
overlaid on img only where alpha_mask is not 0."""
|
57 |
+
# only HWC numpy arrays allowed
|
58 |
+
assert isinstance(img, np.ndarray), f'Input image must be a numpy array. Got {type(img)}'
|
59 |
+
assert isinstance(msk, np.ndarray), f'Input mask must be a numpy array. Got {type(msk)}'
|
60 |
+
if alpha_mask is not None:
|
61 |
+
assert isinstance(alpha_mask, np.ndarray), f'Alpha mask must be a numpy array. Got {type(alpha_mask)}'
|
62 |
+
assert alpha_mask.dtype in [np.float32, bool], f'Alpha mask must be of type np.float32 or bool. Got {alpha_mask.dtype}'
|
63 |
+
assert alpha_mask.shape[2] == 1, f'Alpha mask must be formatted as HWC, with C = 1. Got a shape of {msk.shape}'
|
64 |
+
assert img.shape[2] in [3,4], f'Input image must be formatted as HWC, with C = 3,4. Got a shape of {img.shape}'
|
65 |
+
assert msk.shape[2] == 1, f'Input mask must be formatted as HWC, with C = 1. Got a shape of {msk.shape}'
|
66 |
+
assert (opacity >= 0) and (opacity <= 1), f'Mask opacity must be between 0 and 1. Got {opacity}'
|
67 |
+
|
68 |
+
# to avoid modifying the original arrays
|
69 |
+
img = img.copy()
|
70 |
+
msk = msk.copy()
|
71 |
+
|
72 |
+
if img.shape[2] == 3:
|
73 |
+
# add alpha channel to img
|
74 |
+
img = np.concatenate([
|
75 |
+
img,
|
76 |
+
np.full((img.shape[0], img.shape[1], 1), 255, dtype=np.uint8)
|
77 |
+
], axis=-1)
|
78 |
+
|
79 |
+
if alpha_image is None:
|
80 |
+
# initialize alpha_image to all Trues
|
81 |
+
alpha_image = img[:,:,[3]]
|
82 |
+
# convert alpha image to bool
|
83 |
+
alpha_image = alpha_image.astype(bool)
|
84 |
+
|
85 |
+
if alpha_mask is None:
|
86 |
+
# initialize alpha_mask to alpha_image
|
87 |
+
alpha_mask = alpha_image # so that alpha_mask is AT LEAST as restrictive as alpha_image
|
88 |
+
# convert alpha mask to bool
|
89 |
+
alpha_mask = alpha_mask.astype(bool)
|
90 |
+
|
91 |
+
|
92 |
+
if msk.dtype != np.uint8:
|
93 |
+
# convert mask to a uint8 grayscale image ([0,1] -> [0,255])
|
94 |
+
# NB: normalize the pixels of the mask we are interested in to [0,1]
|
95 |
+
# before passing it as input!!!
|
96 |
+
msk = (msk * 255).astype(np.uint8)
|
97 |
+
|
98 |
+
# convert mask from grayscale to RGBA
|
99 |
+
msk = cv2.cvtColor(msk, cv2.COLOR_GRAY2RGBA)
|
100 |
+
|
101 |
+
if colormap is not None:
|
102 |
+
# apply specified colormap to msk
|
103 |
+
# NB: values near 0 will be converted to the first colors of the chosen
|
104 |
+
# colormap, whereas values near 255 will be converted to the last colors
|
105 |
+
msk[:,:,:3] = cmapy.colorize(msk[:,:,:3], colormap, rgb_order=True)
|
106 |
+
elif red_mask:
|
107 |
+
# convert white to red
|
108 |
+
msk[:,:,[1,2]] = 0
|
109 |
+
|
110 |
+
|
111 |
+
# apply alpha_image to img's alpha channel
|
112 |
+
img[:,:,[3]] = (alpha_image * img[:,:,[3]]).astype(np.uint8)
|
113 |
+
|
114 |
+
# apply alpha_mask and opacity to msk's alpha channel
|
115 |
+
msk[:,:,[3]] = (alpha_mask * opacity * msk[:,:,[3]]).astype(np.uint8)
|
116 |
+
|
117 |
+
# alpha compositing
|
118 |
+
img_pil = Image.fromarray(img)
|
119 |
+
msk_pil = Image.fromarray(msk)
|
120 |
+
img_pil.alpha_composite(msk_pil)
|
121 |
+
|
122 |
+
return np.array(img_pil)
|
123 |
+
|
124 |
+
|
125 |
+
|
model/growseg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:293f45cfd45e402b2f2e4398aa32e32e2866431e7fa582293718c51bd1317182
|
3 |
+
size 338870239
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
scipy
|
3 |
+
rasterio
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
tqdm
|
7 |
+
loguru
|
8 |
+
opencv-python-headless
|
9 |
+
pillow
|
10 |
+
matplotlib
|
11 |
+
cmapy
|