File size: 6,538 Bytes
82334b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2024 LY Corporation

# LY Corporation licenses this file to you under the Apache License,
# version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at:

#   https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import argparse
import sys
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path

import librosa
import numpy as np
import pyloudnorm as pyln
import pyworld
import soundfile as sf
import syllables
import yaml
from common import getLogger, load_libritts_spk_metadata
from promptttspp.utils.textgrid import read_textgrid
from tqdm.auto import tqdm


def compute_speaking_rate(textgrid_path):
    labels = read_textgrid(textgrid_path.as_posix(), "words")
    if len(labels) < 2:
        return -1
    assert len(labels) >= 2

    start_time = None
    end_time = 0
    num_syllables = 0

    sil_dur = 0
    for label in labels:
        if start_time is None and len(label.name) > 0:
            start_time = label.start
        if len(label.name) > 0:
            num_syllables += syllables.estimate(label.name)
        else:
            sil_dur += label.stop - label.start
    end_time = labels[-1].stop

    try:
        rate = num_syllables / (end_time - start_time - sil_dur)
    except ZeroDivisionError:
        print(f"warn: {textgrid_path}. {end_time}, {start_time}, {sil_dur}")
        rate = -1
    if rate < 0:
        print(f"warn: {textgrid_path}. {end_time}, {start_time}, {sil_dur}")
        rate = -1

    return round(rate, 2)


def loudness_extract(audio, sampling_rate, n_fft=1024, hop_length=240):
    stft = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length) + 1e-7
    power_spectrum = np.abs(stft) ** 2
    bins = librosa.fft_frequencies(sr=sampling_rate, n_fft=n_fft)
    bins[0] += 1e-5  # To prevent zero division
    loudness = librosa.perceptual_weighting(power_spectrum, bins)
    loudness = librosa.db_to_power(loudness)
    loudness = np.log(np.mean(loudness, axis=0) + 1e-5)
    return loudness


def get_parser():
    parser = argparse.ArgumentParser(
        description="Compute per-utterance statistics",
    )
    parser.add_argument(
        "in_dir", type=str, help="LibriTTS per-speaker restructured data root"
    )
    parser.add_argument("f0_stats", type=str, help="f0 stats")
    parser.add_argument(
        "--out_filename",
        type=str,
        default="libritts_r_metadata.yaml",
        help="Output filename",
    )
    parser.add_argument("--num_jobs", type=int, default=8, help="Number of jobs")
    parser.add_argument("--debug", action="store_true", help="Debug")

    return parser


def process_utterance(logger, wav_file, textgrid_file, f0_stats):
    utt_id = wav_file.stem
    spk = utt_id.split("_")[0]
    x, sr = sf.read(wav_file)
    hop_length = int(sr * 0.010)

    invalid = 0

    # Loudness in LUFS
    block_size = min(0.4, len(x) / sr - 0.01)
    meter = pyln.Meter(sr, block_size=block_size)
    loudness_lufs = round(meter.integrated_loudness(x), 2)

    # Per-frame loudness
    frame_loudness = loudness_extract(x, sr, n_fft=1024, hop_length=hop_length)

    # F0
    if spk in f0_stats:
        f0_floor = f0_stats[spk]["f0_floor"]
        f0_ceil = f0_stats[spk]["f0_ceil"]
    else:
        f0_floor = 70
        f0_ceil = 800
        logger.warning(f"Using default f0_floor={f0_floor}, f0_ceil={f0_ceil}")

    f0, timeaxis = pyworld.dio(
        x, sr, frame_period=5, f0_floor=f0_floor, f0_ceil=f0_ceil
    )
    f0 = pyworld.stonemask(x, f0, timeaxis, sr)
    f0_v = f0[f0 > 0]
    lf0_v = np.log(f0_v)

    # e.g. 14_212_000011_000004, 14_212_000011_000009, 14_212_000018_000001
    if len(f0_v) == 0:
        logger.warning(f"{utt_id} has no f0")
        f0_mean = 0
        f0_scale = 1.0
        invalid = 1
        lf0_mean = 0
        lf0_scale = 1.0
    else:
        lf0_mean = np.mean(lf0_v)
        lf0_scale = np.std(lf0_v)
        f0_mean = np.mean(f0_v)
        f0_scale = np.std(f0_v)

    try:
        speaking_rate = compute_speaking_rate(textgrid_file)
        if speaking_rate < 0:
            invalid = 1
    except RuntimeError:
        logger.warning(f"{utt_id} has no valid speaking rate")
        speaking_rate = 0
        invalid = 1

    out = {
        "raw_loudness_lufs": round(float(loudness_lufs), 2),
        "raw_loudness_mean": round(float(frame_loudness.mean()), 2),
        "raw_loudness_scale": round(float(frame_loudness.std()), 2),
        "raw_f0_mean": round(float(f0_mean), 2),
        "raw_f0_scale": round(float(f0_scale), 2),
        "raw_lf0_mean": round(float(lf0_mean), 2),
        "raw_lf0_scale": round(float(lf0_scale), 2),
        "raw_speaking_rate": round(float(speaking_rate), 2),
        "invalid": invalid,
    }

    return utt_id, out


if __name__ == "__main__":
    args = get_parser().parse_args(sys.argv[1:])

    num_jobs = int(args.num_jobs)

    spk2meta = load_libritts_spk_metadata(debug=args.debug)
    in_dir = Path(args.in_dir)

    logger = getLogger(
        verbose=100, filename="log/compute_utt_stats.log", name="compute_utt_stats"
    )

    executor = ProcessPoolExecutor(max_workers=num_jobs)
    futures = []

    with open(args.f0_stats) as f:
        f0_stats = yaml.load(f, Loader=yaml.SafeLoader)

    for spk, _ in tqdm(spk2meta.items()):
        spk_in_dir = in_dir / spk
        spk_mfa_dir = spk_in_dir / "textgrid"

        if not spk_in_dir.exists():
            continue

        textgrid_files = sorted(list(spk_mfa_dir.glob("*.TextGrid")))
        # valid utt_ids
        utt_ids = [f.stem for f in textgrid_files]
        wav_files = [spk_in_dir / "wav24k" / f"{utt_id}.wav" for utt_id in utt_ids]

        for wav_file, textgrid_file in zip(wav_files, textgrid_files):
            futures.append(
                executor.submit(
                    process_utterance,
                    logger,
                    wav_file,
                    textgrid_file,
                    f0_stats,
                )
            )

    metadata = {}
    for future in tqdm(futures):
        utt_id, meta = future.result()
        metadata[utt_id] = meta

    with open(args.out_filename, "w") as of:
        yaml.dump(metadata, of)