File size: 7,680 Bytes
87928b2
 
 
 
 
 
 
a81956f
87928b2
b560d3f
87928b2
 
 
 
 
 
 
 
 
 
 
 
b560d3f
 
 
 
 
 
 
 
 
 
 
87928b2
 
b560d3f
 
 
87928b2
 
 
 
 
 
b560d3f
87928b2
 
 
 
 
 
b560d3f
a81956f
b560d3f
 
a81956f
b560d3f
87928b2
 
a81956f
87928b2
 
 
a81956f
87928b2
a81956f
b560d3f
 
 
a81956f
b560d3f
87928b2
 
b560d3f
87928b2
 
 
 
 
 
 
 
b560d3f
87928b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b560d3f
a81956f
b560d3f
 
 
 
 
 
 
 
 
 
 
a81956f
 
b560d3f
 
 
 
 
 
 
 
 
 
a81956f
b560d3f
 
 
 
 
a81956f
 
87928b2
b560d3f
 
 
 
87928b2
 
a81956f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
import spaces

load_dotenv()

app = FastAPI()

global_data = {
    'models': []
}

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
    {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
    {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
    {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
    {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]

class ModelManager:
    def __init__(self):
        self.models = []
        self.loaded = False
    
    def load_model(self, model_config):
        print(f"Cargando modelo: {model_config['name']}...")
        return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
    
    def load_all_models(self):
        if self.loaded:
            print("Modelos ya están cargados. No es necesario volver a cargarlos.")
            return self.models
        
        print("Iniciando carga de modelos...")
        with ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.load_model, config) for config in model_configs]
            models = []
            for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
                try:
                    model = future.result()
                    models.append(model)
                    print(f"Modelo cargado exitosamente: {model['name']}")
                except Exception as e:
                    print(f"Error al cargar el modelo: {e}")
        
        self.models = models
        self.loaded = True
        print("Todos los modelos han sido cargados.")
        return self.models

model_manager = ModelManager()

global_data['models'] = model_manager.load_all_models()

class ChatRequest(BaseModel):
    message: str
    top_k: int = 50
    top_p: float = 0.95
    temperature: float = 0.7

@spaces.GPU(duration=0)
def generate_chat_response(request, model_data):
    try:
        user_input = normalize_input(request.message)
        llm = model_data['model']
        response = llm.create_chat_completion(
            messages=[{"role": "user", "content": user_input}],
            top_k=request.top_k,
            top_p=request.top_p,
            temperature=request.temperature
        )
        reply = response['choices'][0]['message']['content']
        return {"response": reply, "literal": user_input, "model_name": model_data['name']}
    except Exception as e:
        return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']}

def normalize_input(input_text):
    return input_text.strip()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = list(dict.fromkeys(lines))
    return '\n'.join(unique_lines).strip()

def remove_repetitive_responses(responses):
    seen = set()
    unique_responses = []
    for response in responses:
        normalized_response = remove_duplicates(response['response'])
        if normalized_response not in seen:
            seen.add(normalized_response)
            unique_responses.append(response)
    return unique_responses

def select_best_response(responses):
    print("Filtrando respuestas...")
    responses = remove_repetitive_responses(responses)
    responses = [remove_duplicates(response['response']) for response in responses]
    unique_responses = list(dict.fromkeys(responses))
    sorted_responses = sorted(unique_responses, key=lambda r: len(r), reverse=True)
    return sorted_responses[0]

@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
    if not request.message.strip():
        raise HTTPException(status_code=400, detail="The message cannot be empty.")
    
    print(f"Procesando solicitud: {request.message}")

    responses = []
    num_models = len(global_data['models'])

    with ThreadPoolExecutor() as executor:
        futures = [executor.submit(generate_chat_response, request, model_data) for model_data in global_data['models']]
        for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
            try:
                response = future.result()
                responses.append(response)
            except Exception as exc:
                print(f"Error en la generación de respuesta: {exc}")

    if not responses:
        raise HTTPException(status_code=500, detail="Error: No se generaron respuestas.")
    
    best_response = select_best_response(responses)
    
    print(f"Mejor respuesta seleccionada: {best_response}")

    return {
        "best_response": best_response,
        "all_responses": responses
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)